micro-Doppler (m-D) signature

This dataset provides Channel Impulse Response (CIR) measurements from standard-compliant IEEE 802.11ay packets to validate Integrated Sensing and Communication (ISAC) methods. The CIR sequences contain reflections of the transmitted packets on people moving in an indoor environment. They are collected with a 60 GHz software-defined radio experimentation platform based on the IEEE 802.11ay Wi-Fi standard, which is not affected by frequency offsets by operating in full-duplex mode.
The dataset is divided into two parts:


Due to the smaller size, low cost, and easy operational features, small unmanned aerial vehicles (SUAVs) have become more popular for various defense as well as civil applications. They can also give threat to national security if intentionally operated by any hostile actor(s). Since all the SUAV targets have a high degree of resemblances in their micro-Doppler (m-D) space, their accurate detection/classification can be highly guaranteed by the appropriate deep convolutional neural network (DCNN) architecture.