EEG
One of the grand challenges in neuroscience is to understand the developing brain ‘in action and in context’ in complex natural settings. To address this challenge, it is imperative to acquire brain data from freely-behaving children to assay the variability and individuality of neural patterns across gender and age.
- Categories:
Recent advances in scalp electroencephalography (EEG) as a neuroimaging tool have now allowed researchers to overcome technical challenges and movement restrictions typical in traditional neuroimaging studies. Fortunately, recent mobile EEG devices have enabled studies involving cognition and motor control in natural environments that require mobility, such as during art perception and production in a museum setting, and during locomotion tasks.
- Categories:

Nowadays, more and more machine learning models have emerged in the field of sleep staging. However, they have not been widely used in practical situations, which may be due to the non-comprehensiveness of these models' clinical and subject background and the lack of persuasiveness and guarantee of generalization performance outside the given datasets. Meanwhile, polysomnogram (PSG), as the gold standard of sleep staging, is rather intrusive and expensive. In this paper, we propose a novel automatic sleep staging architecture calle
- Categories:
The data set is collected using Neurosky MindWave 2.0 Headset. It uses a single dry electrode placed at FP-1 position for the acquisition of EEG signals. The data is collected from Healthy Individuals and Epileptic Patients performing different Activities of Daily Living (ADLs) in an unconstraint environment.
- Categories:
The data acquisition process begins with capturing EEG signals from 20 healthy skilled volunteers who gave their written consent before performing the experiments. Each volunteer was asked to repeat an experiment for 10 times at different frequencies; each experiment was trigger by a visual stimulus.
- Categories:
Reliable fatigue assessment is desired in many different fields and environments. An efficient fatigue evaluation tool is promising in reducing fatal errors and economic loss in industrial settings. This dataset contains electroencephalographic (EEG) signals obtained
from an 8-channel OpenBCI headset, as well as biometric measurements obtained from the Empatica E4 wristband. Signals obtained from the E4 include: Photopletismography (PPG), heart rate, inter-beat interval (IBI), skin temperature and Electrodermic Activity
- Categories:

Dataset asscociated with a paper in Computer Vision and Pattern Recognition (CVPR)
"Object classification from randomized EEG trials"
If you use this code or data, please cite the above paper.
- Categories:
Dataset description
This dataset contains EEG signals from 73 subjects (42 healthy; 31 disabled) using an ERP-based speller to control different brain-computer interface (BCI) applications. The demographics of the dataset can be found in info.txt. Additionally, you will find the results of the original study broken down by subject, the code to build the deep-learning models used in [1] (i.e., EEG-Inception, EEGNet, DeepConvNet, CNN-BLSTM) and a script to load the dataset.
Original article:
- Categories: