Towards the "Aerosol cytometry" and "Hydrosol cytometry" based on laser aerosol spectrometers

Towards the "Aerosol cytometry" and "Hydrosol cytometry" based on laser aerosol spectrometers

Citation Author(s):
Yu.V.
Zhulanov
Karpov Institute of Physical Chemistry (NIFKhI)
P.Yu.
Makaveev
Karpov Institute of Physical Chemistry (NIFKhI)
O.V.
Gradov
INEPCP RAS
Submitted by:
Oleg Gradov
Last updated:
Fri, 12/21/2018 - 15:12
DOI:
10.21227/njak-qr29
Data Format:
License:
Dataset Views:
112
Share / Embed Cite
Abstract: 

It is possible to construct "aerosol cytometers" based on different types of Zhulanov's laser  aerosol counters | diffusion aerosol spectrometers (DAS) [1-8] and "hydrosol cytometers" based on hydrosol particle counters (adopted for ocean marine, ocean and hydrothermal conditions [9,10]). Such systems can be used for analysis of prebiotic condensation nuclei and self-organization of protobiological structures in aerosols (for example, see [11-17]) not only in native / model Earth conditions, but also in extraterrestrial or exobiological conditions, because the first photoelectric laser spectrometer for large condensation nuclei was developed by Zhulanov et al. in 1970th [18] and they was approbated in real planetochemical and astrochemical conditions. It's well known, that Zhulanov's technique was approbated not only on the Earth (from marine or ocean [9,10] to highest mountains and arid zones [19,20]), but also in cosmic environment on the Venus in framework of the VEGA project [21-25]. It may be used for aims of extraterrestrial organic chemistry (in the gas and aerosol phases) and aerosol exobiology [26-30] (not only for possible bioaerosol contaminants in panspermia-like hypothesis [31], but also for spotaneous self-organized and self-reproducible [32] protocell-like aerosol particles [33]). Consequently, also we can say about possibility of developments of "aerosol protocytometer" / "... protocellometer" based on Zhulanov's laser particle counters [34] and diffusion aerosol spectrometers (and equivalent possibilities for "hydrosol protocytometer" / "...protocellometer", but it is obvious in the standard water-consists concepts of abiogenesi - from the "small warm pond" [35-37] to other hydrosphere-assisted abiogenesis schemes in different oceanic, marine and hydrothermal vent conditions [38-40]). In general (and as a simplest approache for calibration and biological justification / validation of optical scheme of similar cytometric devices) It is obvious (by definition), that aerosol cytometers can be used for multichannel estimation of different types of cells in bioaerosol flows [41-44], including exotic aerosol techniques, such as "aerosol mass cytometry" based on combination of Zhulanov's aerosol counters or aerosol spectrometers with mass-spectrometric aerosol detection [43] (with single-particle resoolution [45,46]). Laser system in different regimes may be used not only as information producing element of experimental setup, but also as a source of energy for initiation of processes in aerosol drops (from ablation [47] in analytical preparation to "power source" for origin of life initiation modeling [48]).

 

References:

  1. Zhulanov Yu. V., Sadovskii B. F., Petryanov I. V. Use of a laser resonator for raising the sensitivity of laser-type aerosol spectrometers // Soviet Physics Doklady. – 1975. – Vol. 20. – P. 810-812.

  2. Zhulanov Yu. V., Sadovskii B. F., Petryanov I. V. Automatic method for determining the stokes size of aerosol-particles // Colloid Journal of the USSR. – 1978. – Vol. 40. – No. 4. – P. 637-641.
  3. Zhulanov Yu.V., Sadovskiy B.F., Petryanov I.V. Potential of optical analysis of aerosol systems // Doklady Earth Sciences. - 1978. - Vol. 238 (http://www.riss.kr/link?id=O19475727).
  4. Zhulanov Yu. V. Sedimentation method for calibrating photoelectric aerosol counters //Measurement Techniques. – 1979. – Vol. 22. – No. 9. – P. 1138-1139.

  5. Zhulanov Yu. V., Lushnikov A. A., Nevskiy I. A. Probability Method of Analyzing Dispersed Systems //Izvestiya: Atmospheric and oceanic physics. – 1986. – Vol. 22. – P. 39.
  6. Zhulanov Yu.V., Lushnikov A. A., Nevskiy I. A. Unique Features of Multiple Counting of Particles by Photoelectric Counters //Izvestiya, Atmospheric and Oceanic Phys. – 1985. – Vol. 21. – No. 11. – P. 885-889.

  7. Zhulanov Yu. V., Lushnikov A. A., Nevsky I. A. [Specific features of particle multiple counting by aerosol counters] // [Izvestiya Akademii Nauk SSSR. Fizika Atmosfery i Okeana]. – 1985. – Vol. 21. – No. 11. – P. 1166-1172.
  8. Karneeva N. Yu., Zhulanov Yu. V., Belov S. V., Pavlikhin G. P., Krasovitskaya K. A. [Investigation of the fraction coefficients of overshooting by a laser aerosol spectrometer (Abstracts of Deposited Papers)] // Journal of Engineering Physics. – 1981. – Vol. 41, No. 3 { http://www.itmo.by/jepter/CONTE/411981e/conte41.html }
  9. Zhulanov Yu. V., Sadovskii B. F., Nikitin O. N., Petryanov I. V. Investigation of the maritime submicron aerosols // Dokl. Akad. Nauk SSSR. - Vol. 242(4). - P. 800-803.
  10. Zhulanov Yu. V., Petryanov I. V. (The) Mechanism of generation of marine aerosols // Doklady Earth Sciences. - 1980. - Vol. 250. (http://www.riss.kr/link?id=O19476687)
  11. Tuck A. The role of atmospheric aerosols in the origin of life //Surveys in Geophysics. – 2002. – Vol. 23. – No. 5. – P. 379-409.
  12. Donaldson D. J., Tervahattu H., Tuck A. F., Vaida V. Organic aerosols and the origin of life: An hypothesis. // Origins of Life and Evolution of the Biosphere. – 2004. – Vol. 34. – No. 1-2. – P. 57-67.
  13. Dobson C. M., Ellison G. B., Tuck A. F., Vaida V. Atmospheric aerosols as prebiotic chemical reactors //Proceedings of the National Academy of Sciences. – 2000. – Vol. 97. – No. 22. – P. 11864-11868.
  14. Ellison G. B., Tuck A. F., Vaida V. Atmospheric processing of organic aerosols //Journal of Geophysical Research: Atmospheres. – 1999. – Vol. 104. – No. D9. – P. 11633-11641.
  15. Tervahattu H., Tuck A., Vaida V. Chemistry in prebiotic aerosols: a mechanism for the origin of life // Origins. – Springer, Dordrecht, 2004. – P. 153-165.
  16. Donaldson D. J., Tuck A. F., Vaida V. The asymmetry of organic aerosol fission and prebiotic chemistry //Origins of Life and Evolution of the Biosphere. – 2002. – Vol. 32. – No. 3. – P. 237-245.
  17. Zaritsky A. R., Grachev V. I. Vorontsov YuP, Pronin VS. Energy Aspects of Abiogenesis in the Atmosphere on Hydrocarbon Aerosol Nanodroplets // RENSIT. – 2013. – Vol. 5. – No. 2. – P. 105.
  18. Zhulanov I. V., Petrianov I. V., Sadovskii B. F. Photoelectric laser spectrometer for large condensation nuclei // Akademiia Nauk SSSR Fizika Atmosfery i Okeana. – 1978. – Vol. 14. – P. 520-526. [Жуланов Ю.В., Петрянов И.В., Садовский Б.Ф. Лазерный фотоэлектрический спектрометр больших ядер конденсации // Физик атмосфер и океаяа, - 1978. - Т. 14, N° 6. - С. 520-526]
  19. Zagajnov V., Zhulanov Yu., Lushnikov A., Stulov L., Osidze I., Tsitskishvili M. [Diurnal-variations of the atmospheric aerosol parameters of mountain regions] // Izvestiya Akademii Nauk SSSR. Fizika Atmosfery I Okeana. – 1987. – Vol. 23. – №. 12. – No. 1323-1329.
  20. Zhulanov Yu.V., Zagaynov L., Yu S., Nevskiy I.A., Stulov L.D. [Highly dispersed submicron atmospheric aerosols of the arid zone] // Izvestiya, Atmos. Ocean. Phys. - 1986. - Vol. 22. - P. 29–40.
  21. Zhulanov Yu. V., Mukhin L. M., Nenarokov D. F. Aerosol Counts in Venus Clouds-Preliminary VEGA-1 and VEGA-2 Density Profiles h= 63-47-km // Soviet Astronomy Letters. – 1986. – Vol. 12. – P. 49-52. [Zhulanov Yu. V., Mukhin L. M., Nenarokov D. F. Aerosol counts in Venus clouds-Preliminary VEGA 1, 2 density profiles, H= 63-47 km // Pisma v Astronomicheskii Zhurnal. – 1986. – Vol. 12. – P. 123-130].
  22. Zhulanov Yu. V., Mukhin L. M., Nenarokov D. F., Structure of the cloud layer in the Venusian atmosphere (the Vega project) // Doklady Earth Sciences. - 1987. - Vol. 292. - (http://www.riss.kr/link?id=O19482329) [Zhulanov Yu. V. et al. Structure of the cloud layer in the Venusian atmosphere // Transactions (Doklady) of the USSR Academy of Sciences: Earth science sections. – Scripta Technica, Incorporated, 1987. – Vol. 292. – No. 1. – P. 18].
  23. Zhulanov Yu. V. Photoelectric transducer for analysis of aerosols in the cloud layer of the atmosphere of Venus //Colloid Journal USSR (English Translation). – 1988. – Vol. 50. – No. 2. – P. 221-228.

  24. Zhulanov Yu. V., Mukhin L. M., Nenarokov D. F. Particle-size distributions in the cloud layer of the Venusian atmosphere (the Vega experiment) // Doklady Earth Sciences. - 1987. - Vol. 295 (http://www.riss.kr/link?id=O19482543)
  25. Zhulanov Yu. V., Mukhin L. M., Nenarokov D. F. Mechanisms generating the cloud layer in the Venusian atmosphere // Doklady Earth Sciences - 1987. - Vol. 295  ( http://www.riss.kr/link?id=O19482547) [Zhulanov Y. V., Mukhin L. M., Nenarokov D. F. Mechanisms generating the cloud layer in the Venusian atmosphere // Transactions (Doklady) of the USSR Academy of Sciences: Earth science sections. – Scripta Technica, Incorporated, 1988. – Vol. 295. – P. 19].
  26. Raulin F. Titan's organic chemistry and exobiology // Huygens: Science, Payload and Mission. – 1997. – Vol. 1177. – P. 219.
  27. Raulin F., Coll P., Smith N., Benilan Y., Bruston P., Gazeau M. C. New insights into Titan's organic chemistry in the gas and aerosol phases // Advances in Space Research. – 1999. – Vol. 24. – No. 4. – P. 453-460.
  28. McKay C. P., Stoker C. R., Morris J., Conley G., Schwartz D. Space station gas-grain simulation facility: Application to exobiology // Advances in Space Research. – 1986. – Vol. 6. – №. 12. – P. 195-206.
  29. Coll P. et al. Experimental laboratory simulation of Titan’s atmosphere: aerosols and gas phase //Planetary and Space Science. – 1999. – Vol. 47. – No. 10-11. – P. 1331-1340.
  30. Scattergood T. W., Oberbeck V. R., Carle G. C. Aerosols in Titan's Atmosphere: Implications for Exobiology and the Cassini Mission // Bulletin of the American Astronomical Society. – 1989. – Vol. 21. – P. 960.
  31. Lee B. U. Life comes from the air: a short review on bioaerosol control // Aerosol Air Qual. Res. – 2011. – Vol. 11. – No. 7. – P. 921-927.
  32. Donaldson D. J., Tuck A. F., Vaida V. Spontaneous fission of atmospheric aerosol particles //Physical Chemistry Chemical Physics. – 2001. – Vol. 3. – No. 23. – P. 5270-5273. 
  33. Zaritsky A. R., Grachev V. I., Vorontsov Y. P., Pronin V. S. Abiogenesis transition from the atmosphere into the hydrosphere: from vesicles to protocells // RENSIT – 2014 – Vol. 6. – No. 2 – P. 221-231.
  34. Zhulanov Yu.V., Nikitin O.V., Saprykin K.G., Nevskiy I.A., Sedovskiy B.F., Petryanov T.V. [Laser particle counter] // PTE. - 1983. - Vol. 122. - No. 3. - P. 177-180.
  35. Follmann H., Brownson C. Darwin’s warm little pond revisited: from molecules to the origin of life //Naturwissenschaften. – 2009. – Vol. 96. – No. 11. – P. 1265-1292.
  36. Burcar B., Pasek M., Gull M., Cafferty B. J., Velasco F., Hud N. V., Menor‐Salván C. Darwin's warm little pond: a one‐pot reaction for prebiotic phosphorylation and the mobilization of phosphate from minerals in a urea‐based solvent //Angewandte Chemie International Edition. – 2016. – Vol. 55. – No. 42. – P. 13249-13253.
  37. Cronin J. R. Darwin warm little pond // Chemical & Engineering News. – 1988. – Vol. 66. – No. 15. – P. 4-5.
  38. Holm N. G. Report on the workshop:‘Chemical evolution and neo-abiogenesis in marine hydrothermal systems’ // Origins of life and evolution of the biosphere. – 1990. – Vol. 20. – No. 2. – P. 93-98.
  39. Vance S., Harnmeijer J., Kimura J., Hussmann H., DeMartin B., Brown J. M. Hydrothermal systems in small ocean planets // Astrobiology. – 2007. – Vol. 7. – No. 6. – P. 987-1005.
  40. Emeline A., Otroshchenko V., Ryabchuk V., Serpone N. The Chemical Evolution of Atmosphere and Oceans The Chemical Evolution of Atmosphere and Oceans, 1984 // Journal of Photochemistry and Photobiology C: Photochemistry reviews. – 2003. – Vol. 3. – No. 3. – P. 203-224.
  41. Zhen H., Han T., Fennell D. E., Mainelis G. A systematic comparison of four bioaerosol generators: Affect on culturability and cell membrane integrity when aerosolizing Escherichia coli bacteria // Journal of Aerosol Science. – 2014. – Vol. 70. – P. 67-79.
  42. King M. D., McFarland A. R. Bioaerosol sampling with a wetted wall cyclone: cell culturability and DNA integrity of Escherichia coli bacteria // Aerosol Science and Technology. – 2012. – Vol. 46. – No. 1. – P. 82-93.
  43. Madonna A. J., Voorhees K. J., Hadfield T. L., Hilyard E. J. Investigation of cell culture media infected with viruses by pyrolysis mass spectrometry: Implications for bioaerosol detection // Journal of the American Society for Mass Spectrometry. – 1999. – Vol. 10. – No. 6. – P. 502-511.
  44. Alderman T. S., Thomann W. R., Hunt D. L. Assessment of Bioaerosol Reduction Methods in Stem Cell Transplant Units at a University Hospital // Applied Biosafety. – 2004. – Vol. 9. – No. 3. – P. 143-154.
  45. Prather K. A., Nordmeyer T., Salt K. Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry //Analytical Chemistry. – 1994. – Т. 66. – Vol. 9. – P. 1403-1407.
  46. Hobbs S. E., Olesik J. W. Inductively coupled plasma mass spectrometry signal fluctuations due to individual aerosol droplets and vaporizing particles // Analytical chemistry. – 1992. – Vol. 64. – No. 3. – P. 274-283.
  47. Günther D., Heinrich C. A. Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier // Journal of Analytical Atomic Spectrometry. – 1999. – Vol. 14. – No. 9. – P. 1363-1368.
  48. Lazarenko A. G., Andreev A. N., Kanaev A. V. Origin of life experiment enlightened by laser // Advanced Optoelectronics and Lasers (CAOL), 2016 IEEE 7th International Conference on. – IEEE, 2016. – P. 83-84.
Instructions: 

t is possible to construct "aerosol cytometers" based on different types Zhulanov's laser  aerosol counters | diffusion aerosol spectrometers (DAS) [1-8] and "hydrosol cytometers" based on hydrosol particle counters (adopted for ocean marine, ocean and hydrothermal conditions [9,10]). Such systems can be used for analysis of prebiotic condensation nuclei and self-organization of protobiological structures in aerosols (for example, see [11-17]) not only in native / model Earth conditions, but also in extraterrestrial or exobiological conditions, because the first photoelectric laser spectrometer for large condensation nuclei was developed by Zhulanov et al. in 1970th [18] and they was approbated in real planetochemical and astrochemical conditions. It's well known, that Zhulanov's technique was approbated not only on the Earth (from marine or ocean [9,10] to highest mountains and arid zones [19,20]), but also in cosmic environment on the Venus in framework of the VEGA project [21-25]. It may be used for aims of extraterrestrial organic chemistry (in the gas and aerosol phases) and aerosol exobiology [26-30] (not only for possible bioaerosol contaminants in panspermia-like hypothesis [31], but also for spotaneous self-organized and self-reproducible [32] protocell-like aerosol particles [33]). Consequently, also we can say about possibility of developments of "aerosol protocytometer" / "... protocellometer" based on Zhulanov's laser particle counters [34] and diffusion aerosol spectrometers (and equivalent possibilities for "hydrosol protocytometer" / "...protocellometer", but it is obvious in the standard water-consists concepts of abiogenesi - from the "small warm pond" [35-37] to other hydrosphere-assisted abiogenesis schemes in different oceanic, marine and hydrothermal vent conditions [38-40]). In general (and as a simplest approache for calibration and biological justification / validation of optical scheme of similar cytometric devices) It is obvious (by definition), that aerosol cytometers can be used for multichannel estimation of different types of cells in bioaerosol flows [41-44], including exotic aerosol techniques, such as "aerosol mass cytometry" based on combination of Zhulanov's aerosol counters or aerosol spectrometers with mass-spectrometric aerosol detection [43] (with single-particle resoolution [45,46]). Laser system in different regimes may be used not only as information producing element of experimental setup, but also as a source of energy for initiation of processes in aerosol drops (from ablation [47] in analytical preparation to "power source" for origin of life initiation modeling [48]).

 

References:

  1. Zhulanov Yu. V., Sadovskii B. F., Petryanov I. V. Use of a laser resonator for raising the sensitivity of laser-type aerosol spectrometers // Soviet Physics Doklady. – 1975. – Vol. 20. – P. 810-812.

  2. Zhulanov Yu. V., Sadovskii B. F., Petryanov I. V. Automatic method for determining the stokes size of aerosol-particles // Colloid Journal of the USSR. – 1978. – Vol. 40. – No. 4. – P. 637-641.
  3. Zhulanov Yu.V., Sadovskiy B.F., Petryanov I.V. Potential of optical analysis of aerosol systems // Doklady Earth Sciences. - 1978. - Vol. 238 (http://www.riss.kr/link?id=O19475727).
  4. Zhulanov Yu. V. Sedimentation method for calibrating photoelectric aerosol counters //Measurement Techniques. – 1979. – Vol. 22. – No. 9. – P. 1138-1139.

  5. Zhulanov Yu. V., Lushnikov A. A., Nevskiy I. A. Probability Method of Analyzing Dispersed Systems //Izvestiya: Atmospheric and oceanic physics. – 1986. – Vol. 22. – P. 39.
  6. Zhulanov Yu.V., Lushnikov A. A., Nevskiy I. A. Unique Features of Multiple Counting of Particles by Photoelectric Counters //Izvestiya, Atmospheric and Oceanic Phys. – 1985. – Vol. 21. – No. 11. – P. 885-889.

  7. Zhulanov Yu. V., Lushnikov A. A., Nevsky I. A. [Specific features of particle multiple counting by aerosol counters] // [Izvestiya Akademii Nauk SSSR. Fizika Atmosfery i Okeana]. – 1985. – Vol. 21. – No. 11. – P. 1166-1172.
  8. Karneeva N. Yu., Zhulanov Yu. V., Belov S. V., Pavlikhin G. P., Krasovitskaya K. A. [Investigation of the fraction coefficients of overshooting by a laser aerosol spectrometer (Abstracts of Deposited Papers)] // Journal of Engineering Physics. – 1981. – Vol. 41, No. 3 { http://www.itmo.by/jepter/CONTE/411981e/conte41.html }
  9. Zhulanov Yu. V., Sadovskii B. F., Nikitin O. N., Petryanov I. V. Investigation of the maritime submicron aerosols // Dokl. Akad. Nauk SSSR. - Vol. 242(4). - P. 800-803.
  10. Zhulanov Yu. V., Petryanov I. V. (The) Mechanism of generation of marine aerosols // Doklady Earth Sciences. - 1980. - Vol. 250. (http://www.riss.kr/link?id=O19476687)
  11. Tuck A. The role of atmospheric aerosols in the origin of life //Surveys in Geophysics. – 2002. – Vol. 23. – No. 5. – P. 379-409.
  12. Donaldson D. J., Tervahattu H., Tuck A. F., Vaida V. Organic aerosols and the origin of life: An hypothesis. // Origins of Life and Evolution of the Biosphere. – 2004. – Vol. 34. – No. 1-2. – P. 57-67.
  13. Dobson C. M., Ellison G. B., Tuck A. F., Vaida V. Atmospheric aerosols as prebiotic chemical reactors //Proceedings of the National Academy of Sciences. – 2000. – Vol. 97. – No. 22. – P. 11864-11868.
  14. Ellison G. B., Tuck A. F., Vaida V. Atmospheric processing of organic aerosols //Journal of Geophysical Research: Atmospheres. – 1999. – Vol. 104. – No. D9. – P. 11633-11641.
  15. Tervahattu H., Tuck A., Vaida V. Chemistry in prebiotic aerosols: a mechanism for the origin of life // Origins. – Springer, Dordrecht, 2004. – P. 153-165.
  16. Donaldson D. J., Tuck A. F., Vaida V. The asymmetry of organic aerosol fission and prebiotic chemistry //Origins of Life and Evolution of the Biosphere. – 2002. – Vol. 32. – No. 3. – P. 237-245.
  17. Zaritsky A. R., Grachev V. I. Vorontsov YuP, Pronin VS. Energy Aspects of Abiogenesis in the Atmosphere on Hydrocarbon Aerosol Nanodroplets // RENSIT. – 2013. – Vol. 5. – No. 2. – P. 105.
  18. Zhulanov I. V., Petrianov I. V., Sadovskii B. F. Photoelectric laser spectrometer for large condensation nuclei // Akademiia Nauk SSSR Fizika Atmosfery i Okeana. – 1978. – Vol. 14. – P. 520-526. [Жуланов Ю.В., Петрянов И.В., Садовский Б.Ф. Лазерный фотоэлектрический спектрометр больших ядер конденсации // Физик атмосфер и океаяа, - 1978. - Т. 14, N° 6. - С. 520-526]
  19. Zagajnov V., Zhulanov Yu., Lushnikov A., Stulov L., Osidze I., Tsitskishvili M. [Diurnal-variations of the atmospheric aerosol parameters of mountain regions] // Izvestiya Akademii Nauk SSSR. Fizika Atmosfery I Okeana. – 1987. – Vol. 23. – №. 12. – No. 1323-1329.
  20. Zhulanov Yu.V., Zagaynov L., Yu S., Nevskiy I.A., Stulov L.D. [Highly dispersed submicron atmospheric aerosols of the arid zone] // Izvestiya, Atmos. Ocean. Phys. - 1986. - Vol. 22. - P. 29–40.
  21. Zhulanov Yu. V., Mukhin L. M., Nenarokov D. F. Aerosol Counts in Venus Clouds-Preliminary VEGA-1 and VEGA-2 Density Profiles h= 63-47-km // Soviet Astronomy Letters. – 1986. – Vol. 12. – P. 49-52. [Zhulanov Yu. V., Mukhin L. M., Nenarokov D. F. Aerosol counts in Venus clouds-Preliminary VEGA 1, 2 density profiles, H= 63-47 km // Pisma v Astronomicheskii Zhurnal. – 1986. – Vol. 12. – P. 123-130].
  22. Zhulanov Yu. V., Mukhin L. M., Nenarokov D. F., Structure of the cloud layer in the Venusian atmosphere (the Vega project) // Doklady Earth Sciences. - 1987. - Vol. 292. - (http://www.riss.kr/link?id=O19482329) [Zhulanov Yu. V. et al. Structure of the cloud layer in the Venusian atmosphere // Transactions (Doklady) of the USSR Academy of Sciences: Earth science sections. – Scripta Technica, Incorporated, 1987. – Vol. 292. – No. 1. – P. 18].
  23. Zhulanov Yu. V. Photoelectric transducer for analysis of aerosols in the cloud layer of the atmosphere of Venus //Colloid Journal USSR (English Translation). – 1988. – Vol. 50. – No. 2. – P. 221-228.

  24. Zhulanov Yu. V., Mukhin L. M., Nenarokov D. F. Particle-size distributions in the cloud layer of the Venusian atmosphere (the Vega experiment) // Doklady Earth Sciences. - 1987. - Vol. 295 (http://www.riss.kr/link?id=O19482543)
  25. Zhulanov Yu. V., Mukhin L. M., Nenarokov D. F. Mechanisms generating the cloud layer in the Venusian atmosphere // Doklady Earth Sciences - 1987. - Vol. 295  ( http://www.riss.kr/link?id=O19482547) [Zhulanov Y. V., Mukhin L. M., Nenarokov D. F. Mechanisms generating the cloud layer in the Venusian atmosphere // Transactions (Doklady) of the USSR Academy of Sciences: Earth science sections. – Scripta Technica, Incorporated, 1988. – Vol. 295. – P. 19].
  26. Raulin F. Titan's organic chemistry and exobiology // Huygens: Science, Payload and Mission. – 1997. – Vol. 1177. – P. 219.
  27. Raulin F., Coll P., Smith N., Benilan Y., Bruston P., Gazeau M. C. New insights into Titan's organic chemistry in the gas and aerosol phases // Advances in Space Research. – 1999. – Vol. 24. – No. 4. – P. 453-460.
  28. McKay C. P., Stoker C. R., Morris J., Conley G., Schwartz D. Space station gas-grain simulation facility: Application to exobiology // Advances in Space Research. – 1986. – Vol. 6. – №. 12. – P. 195-206.
  29. Coll P. et al. Experimental laboratory simulation of Titan’s atmosphere: aerosols and gas phase //Planetary and Space Science. – 1999. – Vol. 47. – No. 10-11. – P. 1331-1340.
  30. Scattergood T. W., Oberbeck V. R., Carle G. C. Aerosols in Titan's Atmosphere: Implications for Exobiology and the Cassini Mission // Bulletin of the American Astronomical Society. – 1989. – Vol. 21. – P. 960.
  31. Lee B. U. Life comes from the air: a short review on bioaerosol control // Aerosol Air Qual. Res. – 2011. – Vol. 11. – No. 7. – P. 921-927.
  32. Donaldson D. J., Tuck A. F., Vaida V. Spontaneous fission of atmospheric aerosol particles //Physical Chemistry Chemical Physics. – 2001. – Vol. 3. – No. 23. – P. 5270-5273. 
  33. Zaritsky A. R., Grachev V. I., Vorontsov Y. P., Pronin V. S. Abiogenesis transition from the atmosphere into the hydrosphere: from vesicles to protocells // RENSIT – 2014 – Vol. 6. – No. 2 – P. 221-231.
  34. Zhulanov Yu.V., Nikitin O.V., Saprykin K.G., Nevskiy I.A., Sedovskiy B.F., Petryanov T.V. [Laser particle counter] // PTE. - 1983. - Vol. 122. - No. 3. - P. 177-180.
  35. Follmann H., Brownson C. Darwin’s warm little pond revisited: from molecules to the origin of life //Naturwissenschaften. – 2009. – Vol. 96. – No. 11. – P. 1265-1292.
  36. Burcar B., Pasek M., Gull M., Cafferty B. J., Velasco F., Hud N. V., Menor‐Salván C. Darwin's warm little pond: a one‐pot reaction for prebiotic phosphorylation and the mobilization of phosphate from minerals in a urea‐based solvent //Angewandte Chemie International Edition. – 2016. – Vol. 55. – No. 42. – P. 13249-13253.
  37. Cronin J. R. Darwin warm little pond // Chemical & Engineering News. – 1988. – Vol. 66. – No. 15. – P. 4-5.
  38. Holm N. G. Report on the workshop:‘Chemical evolution and neo-abiogenesis in marine hydrothermal systems’ // Origins of life and evolution of the biosphere. – 1990. – Vol. 20. – No. 2. – P. 93-98.
  39. Vance S., Harnmeijer J., Kimura J., Hussmann H., DeMartin B., Brown J. M. Hydrothermal systems in small ocean planets // Astrobiology. – 2007. – Vol. 7. – No. 6. – P. 987-1005.
  40. Emeline A., Otroshchenko V., Ryabchuk V., Serpone N. The Chemical Evolution of Atmosphere and Oceans The Chemical Evolution of Atmosphere and Oceans, 1984 // Journal of Photochemistry and Photobiology C: Photochemistry reviews. – 2003. – Vol. 3. – No. 3. – P. 203-224.
  41. Zhen H., Han T., Fennell D. E., Mainelis G. A systematic comparison of four bioaerosol generators: Affect on culturability and cell membrane integrity when aerosolizing Escherichia coli bacteria // Journal of Aerosol Science. – 2014. – Vol. 70. – P. 67-79.
  42. King M. D., McFarland A. R. Bioaerosol sampling with a wetted wall cyclone: cell culturability and DNA integrity of Escherichia coli bacteria // Aerosol Science and Technology. – 2012. – Vol. 46. – No. 1. – P. 82-93.
  43. Madonna A. J., Voorhees K. J., Hadfield T. L., Hilyard E. J. Investigation of cell culture media infected with viruses by pyrolysis mass spectrometry: Implications for bioaerosol detection // Journal of the American Society for Mass Spectrometry. – 1999. – Vol. 10. – No. 6. – P. 502-511.
  44. Alderman T. S., Thomann W. R., Hunt D. L. Assessment of Bioaerosol Reduction Methods in Stem Cell Transplant Units at a University Hospital // Applied Biosafety. – 2004. – Vol. 9. – No. 3. – P. 143-154.
  45. Prather K. A., Nordmeyer T., Salt K. Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry //Analytical Chemistry. – 1994. – Т. 66. – Vol. 9. – P. 1403-1407.
  46. Hobbs S. E., Olesik J. W. Inductively coupled plasma mass spectrometry signal fluctuations due to individual aerosol droplets and vaporizing particles // Analytical chemistry. – 1992. – Vol. 64. – No. 3. – P. 274-283.
  47. Günther D., Heinrich C. A. Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier // Journal of Analytical Atomic Spectrometry. – 1999. – Vol. 14. – No. 9. – P. 1363-1368.
  48. Lazarenko A. G., Andreev A. N., Kanaev A. V. Origin of life experiment enlightened by laser // Advanced Optoelectronics and Lasers (CAOL), 2016 IEEE 7th International Conference on. – IEEE, 2016. – P. 83-84.

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Login or subscribe now. Sign up to be a Beta Tester and receive a coupon code for a free subscription to IEEE DataPort!

Embed this dataset on another website

Copy and paste the HTML code below to embed your dataset:

Share via email or social media

Click the buttons below:

facebooktwittermailshare
[1] Yu.V. Zhulanov, P.Yu. Makaveev, O.V. Gradov, "Towards the "Aerosol cytometry" and "Hydrosol cytometry" based on laser aerosol spectrometers", IEEE Dataport, 2018. [Online]. Available: http://dx.doi.org/10.21227/njak-qr29. Accessed: Dec. 07, 2019.
@data{njak-qr29-18,
doi = {10.21227/njak-qr29},
url = {http://dx.doi.org/10.21227/njak-qr29},
author = {Yu.V. Zhulanov; P.Yu. Makaveev; O.V. Gradov },
publisher = {IEEE Dataport},
title = {Towards the "Aerosol cytometry" and "Hydrosol cytometry" based on laser aerosol spectrometers},
year = {2018} }
TY - DATA
T1 - Towards the "Aerosol cytometry" and "Hydrosol cytometry" based on laser aerosol spectrometers
AU - Yu.V. Zhulanov; P.Yu. Makaveev; O.V. Gradov
PY - 2018
PB - IEEE Dataport
UR - 10.21227/njak-qr29
ER -
Yu.V. Zhulanov, P.Yu. Makaveev, O.V. Gradov. (2018). Towards the "Aerosol cytometry" and "Hydrosol cytometry" based on laser aerosol spectrometers. IEEE Dataport. http://dx.doi.org/10.21227/njak-qr29
Yu.V. Zhulanov, P.Yu. Makaveev, O.V. Gradov, 2018. Towards the "Aerosol cytometry" and "Hydrosol cytometry" based on laser aerosol spectrometers. Available at: http://dx.doi.org/10.21227/njak-qr29.
Yu.V. Zhulanov, P.Yu. Makaveev, O.V. Gradov. (2018). "Towards the "Aerosol cytometry" and "Hydrosol cytometry" based on laser aerosol spectrometers." Web.
1. Yu.V. Zhulanov, P.Yu. Makaveev, O.V. Gradov. Towards the "Aerosol cytometry" and "Hydrosol cytometry" based on laser aerosol spectrometers [Internet]. IEEE Dataport; 2018. Available from : http://dx.doi.org/10.21227/njak-qr29
Yu.V. Zhulanov, P.Yu. Makaveev, O.V. Gradov. "Towards the "Aerosol cytometry" and "Hydrosol cytometry" based on laser aerosol spectrometers." doi: 10.21227/njak-qr29