Time Series

This dataset includes the relevant data for the journal article titled 'A Novel LSTM Pipeline to Detect Anomalies in Manufacturing Production'. In this paper, we present a novel anomaly detection method using a semi-supervised LSTM forecasting approach to highlight process anomalies in a complex, real-world dataset in an automotive manufacturing setting. This data includes two time-series subsets, each with 5000 labeled observations.

Categories:
76 Views

time-series, accelerometer, gyroscope-to-yaw, acoustic localization

Categories:
182 Views

This dataset is composed of 4-Dimensional time series files, representing the movements of all 38 participants during a novel control task. In the ‘5D_Data_Extractor.py’ file this can be set up to 6-Dimension, by the ‘fields_included’ variable. Two folders are included, one ready for preprocessing (‘subjects raw’) and the other already preprocessed ‘subjects preprocessed’.

Categories:
314 Views