While deep learning has catalyzed breakthroughs across numerous domains, its broader adoption in clinical settings is inhibited by the costly and time-intensive nature of data acquisition and annotation. To further facilitate medical machine learning, we present an ultrasound dataset of 10,223 Brightness-mode (B-mode) images consisting of sagittal slices of porcine spinal cords (N=25) before and after a contusion injury.
The removal of surgical tools from the brain is a critical aspect of post-operative care. Surgical sponges such as cotton balls are one of the most commonly retained tools, as they become visually indistinguishable from the surrounding brain tissue when soaked with blood and can fragment into smaller pieces. This can lead to life-threatening immunological responses and invasive reoperation, demonstrating the need for new foreign body object detection methods.