This research proposes a method to detect alcohol consumption from Near-Infra-Red (NIR) periocular eye images. The study focuses on determining the effect of external factors such as alcohol on the Central Nervous System (CNS). The goal is to analyse how this impacts on iris and pupil movements and if it is possible to capture these changes with a standard iris NIR camera. This paper proposes a novel Fused Capsule Network (F-CapsNet) to classify iris NIR images taken under alcohol consumption subjects.
An accurate and reliable image-based quantification system for blueberries may be useful for the automation of harvest management. It may also serve as the basis for controlling robotic harvesting systems. Quantification of blueberries from images is a challenging task due to occlusions, differences in size, illumination conditions and the irregular amount of blueberries that can be present in an image. This paper proposes the quantification per image and per batch of blueberries in the wild, using high definition images captured using a mobile device.