First Name: 
Anselme Herman
Last Name: 
EYELEKO

Datasets & Competitions

The Machine Failure Predictions Dataset (D_2) is a real-world dataset sourced from Kaggle, containing 10,000 records and 14 features pertinent to IIoT device performance and health status. The binary target feature, 'failure', indicates whether a device is functioning (0) or has failed (1). Predictor variables include telemetry readings and categorical features related to device operation and environment. Data preprocessing included aggregating features related to failure types and removing non-informative features such as Product ID.

Categories:
132 Views

The PdM_telemetry Dataset (D_1) is a synthetic dataset designed to support predictive maintenance (PdM) research for IIoT (Industrial Internet of Things) devices by providing sensor-based telemetry data. This dataset initially comprises 97,210 records and 30 features, including a binary target feature, 'failure', which indicates whether a device will fail within the next 24 hours. The remaining features, such as device operational metrics and error counts, serve as predictors.

Categories:
96 Views