Artificial Intelligence
Sed vitae dui libero. Ut turpis nisl, bibendum a cursus congue, iaculis ac ante. In hac habitasse platea dictumst. Sed nec feugiat lacus. Quisque efficitur mattis blandit. Fusce feugiat condimentum facilisis. Mauris a consectetur magna. Pellentesque eleifend lacus nec malesuada facilisis. In et convallis massa. Ut tempor, lectus vel tincidunt lobortis, augue justo commodo velit, at congue mi augue vel nisi. Donec sit amet lorem ut felis mattis vehicula ut at felis. Curabitur non nisl ex. Nam venenatis augue ut dui mollis, eu volutpat leo varius.
- Categories:
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed eget elit sollicitudin, molestie sem non, sodales purus. Pellentesque sagittis hendrerit fermentum. Nam at metus vel mi molestie luctus sit amet at diam. Morbi vitae diam tristique, tincidunt orci eu, feugiat odio. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec auctor enim lacinia vulputate pellentesque. Morbi ac arcu ut nisi aliquam venenatis nec ut diam. Donec viverra est lacus, in volutpat neque tempor vitae. Vestibulum sollicitudin malesuada convallis. Donec ultricies mi eu lacus finibus dignissim.
- Categories:
Hello world
- Categories:
Data from triple-negative breast cancer patients in SEER
- Categories:
this is it
- Categories:
Just testing
- Categories:
Testing
- Categories:
The data set collected using a self-designed electronic nose (e-nose) involved eight Chinese liquor types, which are LanJinJiu with 38% alcohol concentration (LJJ38), LanJinJiu with 48% alcohol concentration (LJJ48), DaoHuaXiang with 42% alcohol concentration (DHX), LuZhouLaoJiao with 38% alcohol concentration (LZLJ), MianZhuDaQu with 38% alcohol concentration (MZDQ), QingJiu with 38% alcohol concentration (QJ), ShiLiXiang (SLX) with 40% alcohol concentration and BianFengHu with 40% alcohol concentration (BFH).
- Categories:
We present below a sample dataset collected using our framework for synthetic data collection that is efficient in terms of time taken to collect and annotate data, and which makes use of free and open source software tools and 3D assets. Our approach provides a large number of systematic variations in synthetic image generation parameters. The approach is highly effective, resulting in a deep learning model with a top-1 accuracy of 72% on the ObjectNet data, which is a new state-of-the-art result.
- Categories: