AI4Mobile Industrial Wireless Datasets: iV2V and iV2I+

- Citation Author(s):
-
Rodrigo Hernangomez (Fraunhofer Heinrich Hertz Institute)Alexandros Palaios (Ericsson Research)Cara Watermann (Ericsson Research)Daniel Schäufele (Fraunhofer Heinrich Hertz Institute)Philipp Geuer (Ericsson Research)Rafail Ismayilov (Fraunhofer Heinrich Hertz Institute)Mohammad Parvini (Vodafone Chair, Technische Universität Dresden)Anton Krause (Vodafone Chair, Technische Universität Dresden)Martin Kasparick (Fraunhofer Heinrich Hertz Institute)Thomas Neugebauer (Götting KG)Oscar D. Ramos-Cantor (Robert Bosch GmbH)Hugues Tchouankem (Robert Bosch GmbH)Jose Leon Calvo (Ericsson Research)Bo Chen (Enway GmbH)Slawomir Stanczak (Fraunhofer Heinrich Hertz Institute)Gerhard Fettweis (Vodafone Chair, Technische Universität Dresden)
- Submitted by:
- Rodrigo Hernangomez
- Last updated:
- DOI:
- 10.21227/04ta-v128
- Data Format:
- Research Article Link:
- Links:
- Categories:
- Keywords:
Abstract
This dataset provides wireless measurements from two industrial testbeds: iV2V (industrial Vehicle-to-Vehicle) and iV2I+ (industrial Vehicular-to-Infrastructure plus sensor).
iV2V covers 10h of sidelink communication scenarios between 3 Automated Guided Vehicles (AGVs), while iV2I+ was conducted for around 16h at an industrial site where an autonomous cleaning robot is connected to a private cellular network.
The data includes information on physical layer parameters (such as signal strength and signal quality), wireless Quality of Service (QoS) like delay and throughput, and positioning information.
The datasets are labelled and pre-filtered for a fast on-boarding and applicability. The common measurement methodology to both datasets pursues an application to Machine Learning (ML) for tasks such as fingerprinting, line-of-sight detection, QoS prediction or link selection, among others.
Instructions:
The parquet files for the respective datasets can be directly downloaded and read with Python using Pandas and parquet support via PyArrow or Fastparquet.
For detailed instructions, please refer to the readme.pdf or the available documentation on GitHub.
Dataset Files
- iV2Ip-sources
- iV2Ip-sources.zip (1.27 GB)
- raw
- minipc.zip (4.63 GB)
- sensors
- ai4mobile_2021-12-14-13-55-41.bag (5.53 GB)
- ai4mobile_2021-12-14-14-28-31.bag (13.25 GB)
- ai4mobile_2021-12-14-15-30-44.bag (4.57 GB)
- ai4mobile_2021-12-14-16-01-41.bag (9.17 GB)
- ai4mobile_2021-12-14-16-38-08.bag (493.12 MB)
- ai4mobile_2021-12-14-16-43-41.bag (6.44 GB)
- run1_2021-12-16-09-28-32_0.bag (5.88 GB)
- run1_2021-12-16-09-48-43_1.bag (6.01 GB)
- run1_2021-12-16-10-09-05_2.bag (5.77 GB)
- run1_2021-12-16-10-28-32_3.bag (5.91 GB)
- run1_2021-12-16-10-49-05_4.bag (5.9 GB)
- run1_2021-12-16-11-08-33_5.bag (5.97 GB)
- run1_2021-12-16-11-29-05_6.bag (5.93 GB)
- run1_2021-12-16-11-48-53_7.bag (5.99 GB)
- run1_2021-12-16-12-08-56_8.bag (6.02 GB)
- run1_2021-12-16-12-28-56_9.bag (2.92 GB)
- run2_2021-12-15-10-31-56.bag (4.48 GB)
- run2_2021-12-15-10-47-40.bag (8.53 GB)
- run2_2021-12-16-12-43-44_0.bag (5.79 GB)
- run2_2021-12-16-13-04-15_1.bag (5.98 GB)
- run2_2021-12-16-13-24-16_2.bag (5.9 GB)
- run2_2021-12-16-13-43-59_3.bag (5.89 GB)
- run2_2021-12-16-14-04-15_4.bag (6.03 GB)
- run2_2021-12-16-14-23-48_5.bag (6.02 GB)
- run2_2021-12-16-14-44-16_6.bag (6 GB)
- run2_2021-12-16-15-04-16_7.bag (1.17 GB)
- run3_2021-12-15-11-24-27_0.bag (4.1 GB)
- run4_2021-12-15-11-39-37_0.bag (8.17 GB)
- run5_2021-12-15-12-16-04_0.bag (8.21 GB)
- run6_2021-12-15-12-49-09_0.bag (8.93 GB)
- run6_2021-12-15-13-20-28_1.bag (8.58 GB)
- run6_2021-12-15-13-50-35_2.bag (8.77 GB)
- run6_2021-12-15-14-19-19_3.bag (8.91 GB)
- run6_2021-12-15-14-50-37_4.bag (1.45 GB)
- run7_2021-12-15-15-54-20_0.bag (2.81 GB)
- run8_2021-12-15-16-10-38_0.bag (5.65 GB)
- run8_2021-12-15-16-30-49_1.bag (5.86 GB)
- run8_2021-12-15-16-52-10_2.bag (5.77 GB)
- run8_2021-12-15-17-11-19_3.bag (5.68 GB)
- run8_2021-12-15-17-30-43_4.bag (5.66 GB)
- run8_2021-12-15-17-51-34_5.bag (5.56 GB)
- run8_2021-12-15-18-12-14_6.bag (4.4 GB)
- test_2021-12-15-10-11-09.bag (3.62 GB)
- server.zip (2.57 GB)
- iV2Ip.parquet (10.69 MB)
- iV2Ip_info.csv (10.67 KB)
- iV2V-sources
- iV2V.parquet (45.25 MB)
- iV2V_info.csv (2.22 KB)