Datasets
Standard Dataset
Thermal images for wildfire core detection
- Citation Author(s):
- Submitted by:
- Linfeng Wang
- Last updated:
- Tue, 11/26/2024 - 21:14
- DOI:
- 10.21227/k0kc-rv13
- Data Format:
- License:
- Categories:
- Keywords:
Abstract
The increasing number of wildfires damages nature and human life, making the early detection of wildfires in complex outdoor environments critical. With the advancement of drones and remote sensing technology, infrared cameras have become essential for wildfire detection. However, as the demand for higher accuracy in detection algorithms grows, the detection model's size and computational costs increase, making it challenging to deploy high-precision detection algorithms on edge computing devices onboard drones for real-time fire detection. This paper introduces a novel infrared wildfire detection network named FCDNet to tackle this issue. It includes an Efficient Processing (EP) module based on the novel Partial Depthwise Convolution (PDWConv) and the lightweight feature-sharing decoupled detection head (Fast Head), achieving low-size and low-computation wildfire detection. An Adaptive Sample Attention (ASA) Loss is introduced to enhance the detection accuracy of wildfire cores in combination with Normalized Wasserstein Distance (NWD) Loss. The experiment shows that the model size of FCDNet is only 4.0MB, representing 63.5% of the baseline YOLOv8n network, with 63.3% of its parameters. It operates at just 5 Giga Floating Point Operations Per Second (GFLOPs), 38.3% lower, and achieves a 77.5% mAP (@50-95 IOU), a 1% increase, with a 460×460 input image size. Compared to the state-of-the-art YOLOv11n, FCDNet reduces parameters, computation, and model size by 26.9%, 20.6%, and 27.3%, respectively. The thermal dataset and training codes used in this study are made publicly available at: https://github.com/WangLF1996/FCDNet-Dataset-and-Algorithm
Documentation
Attachment | Size |
---|---|
README.txt | 1016 bytes |