malware

This dataset is part of my PhD research on malware detection and classification using Deep Learning. It contains static analysis data: Top-1000 imported functions extracted from the 'pe_imports' elements of Cuckoo Sandbox reports. PE malware examples were downloaded from virusshare.com. PE goodware examples were downloaded from portableapps.com and from Windows 7 x86 directories.

106 views
  • Machine Learning
  • Last Updated On: 
    Fri, 11/08/2019 - 05:43

    This dataset is part of my PhD research on malware detection and classification using Deep Learning. It contains static analysis data: Raw PE byte stream rescaled to a 32 x 32 greyscale image using the Nearest Neighbor Interpolation algorithm and then flattened to a 1024 bytes vector. PE malware examples were downloaded from virusshare.com. PE goodware examples were downloaded from portableapps.com and from Windows 7 x86 directories.

    92 views
  • Machine Learning
  • Last Updated On: 
    Thu, 11/07/2019 - 11:45

    This dataset is part of my PhD research on malware detection and classification using Deep Learning. It contains static analysis data (PE Section Headers of the .text, .code and CODE sections) extracted from the 'pe_sections' elements of Cuckoo Sandbox reports. PE malware examples were downloaded from virusshare.com. PE goodware examples were downloaded from portableapps.com and from Windows 7 x86 directories.

    147 views
  • Machine Learning
  • Last Updated On: 
    Wed, 11/06/2019 - 06:10

    This dataset is part of our research on malware detection and classification using Deep Learning. It contains 42,797 malware API call sequences and 1,079 goodware API call sequences. Each API call sequence is composed of the first 100 non-repeated consecutive API calls associated with the parent process, extracted from the 'calls' elements of Cuckoo Sandbox reports.

    189 views
  • Machine Learning
  • Last Updated On: 
    Wed, 11/06/2019 - 06:18

    This study seeks to obtain data which will help to address machine learning based malware research gaps. The specific objective of this study is to build a benchmark dataset for Windows operating system API calls of various malware. This is the first study to undertake metamorphic malware to build sequential API calls. It is hoped that this research will contribute to a deeper understanding of how metamorphic malware change their behavior (i.e. API calls) by adding meaningless opcodes with their own dissembler/assembler parts.

    822 views
  • Security
  • Last Updated On: 
    Tue, 07/30/2019 - 11:07