AIoT Malware detection (Zeek preprocessed)

Citation Author(s):
Nour
Moustafa
UNSW
S.
Hettich
UCI
S. D.
Bay
UCI
Sebastian
Garcia
CVUT
Agustin
Parmisano
CVUT
Maria Jose
Erquiaga
CVUT
Muhammad Dany
AlFriki
NTUST
Cut Alna
Fadhilla
NTUST
Rafael
Kaliski
NSYSU
Submitted by:
Rafael Kaliski
Last updated:
Fri, 02/16/2024 - 12:43
DOI:
10.21227/kkpn-2q14
Data Format:
Links:
License:
0
0 ratings - Please login to submit your rating.

Abstract 

Datsets and scripts are for derivation of a lightweight AIoT malware detection model.

Instructions: 

Datasets and Scripts for “Lightweight Meta-learning BotNet Attack Detection”

— Requirements (code tested with):

Python==3.9

matplotlib==3.5.2

mkl==2022.1.0

mkl_service==2.4.0

mlens==0.2.3

numpy==1.21.5

pandas==1.4.2

scikit_learn==1.1.1

scipy==1.8.0

seaborn==0.11.2

==============================

Datasets and Scripts

==============================

Binary classifier:

——

IoT23 Script: Ensemble_IoT23_Binary.ipynb

IoT23 Dataset: IoT23.csv

Meta Models:  SuperLearner, Subsemble, Sequential

====

IoT23 Script: NML_IoT23_Binary.ipynb

IoT23 Dataset: IoT23.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

——

TON Script:  Ensemble_TON_Binary.ipynb

TON Dataset:  ToN_Distrib.csv

Meta Models:  SuperLearner, Subsemble, Sequential

=====

TON Script: NML_TON_Binary.ipynb

TON Dataset:  ToN_Distrib.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

——

KDD Script: MetaLearning_KDDCUP99.ipynb

KDD Dataset:  KDD99_Labeled.csv

Meta Models:  SuperLearner, Subsemble, Sequential

=====

KDD Script: NML_KDD.ipynb

KDD Dataset:  KDD99_Labeled.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

+++++++++++++++++++++++++++++++

Multicategory classifer:

——

IoT23 Script: Ensemble_MultiCategories_IOT23.ipynb

IoT23 Dataset: Iot-Data.csv

Meta Models:  SuperLearner, Subsemble, Sequential

====

IoT23 Script: NonMetaLearner_MultiCategories_IOT23.ipynb

IoT23 Dataset: Iot-Data.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

——

TON Script:  Ensembles_MultiCategories_TON.ipynb

TON Dataset:  ToN_Distrib.csv

Meta Models:  SuperLearner, Subsemble, Sequential

=====

TON Script: NonMetaLearners_MultiCategories_TON.ipynb

TON Dataset:  ToN_Distrib.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

——

KDD Script: Ensembles_MultiCategories_KDD99.ipynb

KDD Dataset:  KDD99_10%_Labeled.csv

Meta Models:  SuperLearner, Subsemble, Sequential

=====

KDD Script: NonMetaLearner_MultiCategories_KDD99.ipynb

KDD Dataset:  KDD99_10%_Labeled.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

+++++++++++++++++++++++++++++++

 

——

 

Python==3.9

matplotlib==3.5.2

mkl==2022.1.0

mkl_service==2.4.0

mlens==0.2.3

numpy==1.21.5

pandas==1.4.2

scikit_learn==1.1.1

scipy==1.8.0

seaborn==0.11.2

==============================

Datasets and Scripts

==============================

Binary classifier:

——

IoT23 Script: Ensemble_IoT23_Binary.ipynb

IoT23 Dataset: IoT23.csv

Meta Models:  SuperLearner, Subsemble, Sequential

====

IoT23 Script: NML_IoT23_Binary.ipynb

IoT23 Dataset: IoT23.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

——

TON Script:  Ensemble_TON_Binary.ipynb

TON Dataset:  ToN_Distrib.csv

Meta Models:  SuperLearner, Subsemble, Sequential

=====

TON Script: NML_TON_Binary.ipynb

TON Dataset:  ToN_Distrib.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

——

KDD Script: MetaLearning_KDDCUP99.ipynb

KDD Dataset:  KDD99_Labeled.csv

Meta Models:  SuperLearner, Subsemble, Sequential

=====

KDD Script: NML_KDD.ipynb

KDD Dataset:  KDD99_Labeled.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

+++++++++++++++++++++++++++++++

Multicategory classifer:

——

IoT23 Script: Ensemble_MultiCategories_IOT23.ipynb

IoT23 Dataset: Iot-Data.csv

Meta Models:  SuperLearner, Subsemble, Sequential

====

IoT23 Script: NonMetaLearner_MultiCategories_IOT23.ipynb

IoT23 Dataset: Iot-Data.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

——

TON Script:  Ensembles_MultiCategories_TON.ipynb

TON Dataset:  ToN_Distrib.csv

Meta Models:  SuperLearner, Subsemble, Sequential

=====

TON Script: NonMetaLearners_MultiCategories_TON.ipynb

TON Dataset:  ToN_Distrib.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

——

KDD Script: Ensembles_MultiCategories_KDD99.ipynb

KDD Dataset:  KDD99_10%_Labeled.csv

Meta Models:  SuperLearner, Subsemble, Sequential

=====

KDD Script: NonMetaLearner_MultiCategories_KDD99.ipynb

KDD Dataset:  KDD99_10%_Labeled.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

+++++++++++++++++++++++++++++++

 

——

Funding Agency: 
Ministry of Science and Technology (Republic of China)
Grant Number: 
MOST 108-2218-E-011-036-MY3