Low-light images and video footage often exhibit issues due to the interplay of various parameters such as aperture, shutter speed, and ISO settings. These interactions can lead to distortions, especially in extreme lighting conditions. This distortion is primarily caused by the inverse relationship between decreasing light intensity and increasing photon noise, which gets amplified with higher sensor gain. Additionally, secondary characteristics like white balance and color effects can also be adversely affected and may require post-processing correction.


One of the weak points of most of denoising algoritms (deep learning based ones) is the training data. Due to no or very limited amount of groundtruth data available, these algorithms are often evaluated using synthetic noise models such as Additive Zero-Mean Gaussian noise. The downside of this approach is that these simple model do not represent noise present in natural imagery.