Image Analysis

The ability to perceive human facial emotions is an essential feature of various multi-modal applications, especially in the intelligent human-computer interaction (HCI) area. In recent decades, considerable efforts have been put into researching automatic facial emotion recognition (FER). However, most of the existing FER methods only focus on either basic emotions such as the seven/eight categories (e.g., happiness, anger and surprise) or abstract dimensions (valence, arousal, etc.), while neglecting the fruitful nature of emotion statements.

Categories:
416 Views

This dataset contains the trained model that accompanies the publication of the same name:

 Anup Tuladhar*, Serena Schimert*, Deepthi Rajashekar, Helge C. Kniep, Jens Fiehler, Nils D. Forkert, "Automatic Segmentation of Stroke Lesions in Non-Contrast Computed Tomography Datasets With Convolutional Neural Networks," in IEEE Access, vol. 8, pp. 94871-94879, 2020, doi:10.1109/ACCESS.2020.2995632. *: Co-first authors

 

Categories:
2651 Views

Since there is no image-based personality dataset, we used the ChaLearn dataset for creating a new dataset that met the characteristics we required for this work, i.e., selfie images where only one person appears and his face is visible, labeled with the person's apparent personality in the photo.

Categories:
2365 Views