Exoskeletons

Loss of hand function severely impacts the independence of people with spinal cord injuries (SCI) between C5 and C7. To achieve limited grasps or strengthen grip around small objects, these individuals commonly employ a compensatory technique to passively induce finger flexion by extending their wrist. Passive body-powered devices using wrist-driven actuation have been developed to assist this function, in addition to advancements in active robotic devices aimed at finger articulation for dexterous manipulation.
- Categories:
This dataset consists of a bill of materials (.PDF) for the equipment and materials used in the fabrication of the M-BLUE hardware, and SolidWorks CAD models (.SLDPRT, .SLDASM) of the custom sheet metal components and 3D-printed spacer used in the M-BLUE assembly. Please download and unzip "MBLUEdataset.zip" to access the files referenced above.
Supplementary material for the article:
C. Nesler, G. Thomas, N. Divekar, E. Rouse, and R. Gregg, "Enhancing Voluntary Motion with Modular, Backdrivable, Powered Hip and Knee Orthoses," IEEE Robotics & Automation Letters, 2022.
- Categories:

This dataset consists of a bill of materials (.PDF) for the equipment and materials used in the fabrication of the M-BLUE hardware, and SolidWorks CAD models (.SLDPRT, .SLDASM) of the custom sheet metal components and 3D-printed spacer used in the M-BLUE assembly.
- Categories:
Abstract: Recent advances in computer vision and deep learning are allowing researchers to develop automated environment recognition systems for robotic leg prostheses and exoskeletons. However, small-scale and private training datasets have impeded the widespread development and dissemination of image classification algorithms (e.g., convolutional neural networks) for recognizing the human walking environment.
- Categories:
Previous studies of robotic leg prostheses and exoskeletons with regenerative actuators have focused almost exclusively on level-ground walking applications. Here we analyzed the lower-limb joint mechanical work and power during stand-to-sit movements using inverse dynamics to estimate the biomechanical energy theoretically available for electrical energy regeneration and storage. Nine subjects performed 20 sitting and standing movements while lower-limb kinematics and ground reaction forces were experimentally measured.
- Categories: