complex-valued convolutional neural networks; remote sensing; Synthetic Aperture Radar (SAR); deep learning; classification

Development of the Complex-Valued (CV) deep learning architectures has enabled us to exploit the amplitude and phase components of the CV Synthetic Aperture Radar (SAR) data. However, most of the available annotated SAR datasets provide only the amplitude information (Only detected SAR data) and disregard the phase information. The lack of high-quality and large-scale annotated CV-SAR datasets is a significant challenge for developing CV deep learning algorithms in remote sensing.

Categories:
1690 Views