Datasets
Standard Dataset
A Prime Sieve Method
- Citation Author(s):
- Submitted by:
- Wei Ren
- Last updated:
- Thu, 07/16/2020 - 08:33
- DOI:
- 10.21227/8j5c-4m32
- Data Format:
- License:
- Categories:
- Keywords:
Abstract
All primes can be indexed by $k$, as primes must be in the form of
$6k+1$ or $6k-1$. In this paper, we explore for what $k$ such that
either $6k+1$ or $6k-1$ is not a prime. The results can sieve primes
and especially twin primes.
$k \in S_{l} \Rightarrow 6k-1 \not \in \mathbb{P}$, $k \in S_{r}
\Rightarrow 6k+1 \not \in \mathbb{P},$ where $S_{l} = [-I]_{6I+1} =
[I]_{6I-1} \backslash \min([I]_{6I-1}), I \in \mathbb{N},$ and
$S_{r} = [-I]_{6I-1} \cup [I]_{6I+1} \backslash \min([I]_{6I+1}), I
\in \mathbb{N}.$ That is,
$k \not \in (S_{l1} \cup S_{l2}) \Rightarrow 6k-1 \in \mathbb{P}$
and $k \not \in (S_{r1} \cup S_{r2}) \Rightarrow 6k+1 \in
\mathbb{P},$ where
$S_{l1}=\{k|k=(6I-1)*W+I, W \in \mathbb{N}, I \leq W, I \in \mathbb{N}\}\\
=\{k|k=6IW-W+I, W \in \mathbb{N}, I \leq W, I \in \mathbb{N}\}\\
=\{k|k=6xy+(x-y), x,y \in \mathbb{N}, x \leq y\}.$
$S_{l2}=\{k|k=(6I+1)*W-I, W \in \mathbb{N}, I \leq W, I \in \mathbb{N}\}\\
=\{k|k=6IW+W-I, W \in \mathbb{N}, I \leq W, I \in \mathbb{N}\}\\
=\{k|k=6xy-(x-y), x,y \in \mathbb{N}, x \leq y\}.$
$S_{r1}=\{k|k=(6I-1)*W-I, W \in \mathbb{N}, I \leq W, I \in \mathbb{N}\}\\
=\{k|k=6IW-W-I, W \in \mathbb{N}, I \leq W, I \in \mathbb{N}\}\\
=\{k|k=6xy-(x+y), x,y \in \mathbb{N}, x \leq y\}.$
$S_{r2}=\{k|k=(6I+1)*W+I, W \in \mathbb{N}, I \leq W, I \in \mathbb{N}\}\\
=\{k|k=6IW+W+I, W \in \mathbb{N}, I \leq W, I \in \mathbb{N}\}\\
=\{k|k=6xy+(x+y), x,y \in \mathbb{N}, x \leq y\}.$
We also propose $6k\pm1$ Conjecture that is equivalent to Two Prime
Conjecture but easier to approach.
ANSI C source code can be complied by any C complier.