Congratulations! You have been automatically subscribed to IEEE DataPort and can access all datasets on IEEE DataPort!
Congratulations! You have been automatically subscribed to IEEE DataPort and can access all datasets on IEEE DataPort!
A novel ultra-low-voltage (ULV) Dual-EdgeTriggered (DET) flip-flop based on the True-Single-PhaseClocking (TSPC) scheme is presented in this paper. Unlike Single-Edge-Triggering (SET), Dual-Edge-Triggering has the advantage of operating at the half-clock rate of the SET clock. We exploit the TSPC principle to achieve the best energy-efficient figures by reducing the overall clock load (only to 8 transistors) and register power while providing fully static, contention-free functionality to satisfy ULV operation.
The cell characterization scripts and ultra low voltage flip-flop design information including 320-bit (16x20) parallel shift register design....
If you use this data, please add the citation to the following paper :
This paper presents a novel implementation scheme
of the essential circuit blocks for high performance, full-precision
Booth multipliers leveraging a hybrid logic style. By exploiting
the behavior of parasitic capacitance of MOSFETs, a carefully
engineered design style is employed to reduce dynamic power dissipation
while improving the glitch immunity of the circuit blocks.
The circuit-level techniques along with the proposed signal-flow
optimization scheme prevent the generation and propagation