Congratulations! You have been automatically subscribed to IEEE DataPort and can access all datasets on IEEE DataPort!
Congratulations! You have been automatically subscribed to IEEE DataPort and can access all datasets on IEEE DataPort!
In the realm of real-time communications, WebRTC-based multimedia applications are increasingly prevalent as these can be smoothly integrated within Web browsing sessions. The browsing experience is then significantly improved concerning scenarios where browser add-ons and/or plug-ins are used; still, the end user's Quality of Experience (QoE) in WebRTC sessions may be affected by network impairments, such as delays and losses.
Most of Facial Expression Recognition (FER) systems rely on machine learning approaches that require large databases (DBs) for an effective training. As these are not easily available, a good solution is to augment the DBs with appropriate techniques, which are typically based on either geometric transformation or deep learning based technologies (e.g., Generative Adversarial Networks (GANs)). Whereas the first category of techniques have been fairly adopted in the past, studies that use GAN-based techniques are limited for FER systems.
Computer vision systems are commonly used to design touch-less human-computer interfaces (HCI) based on dynamic hand gesture recognition (HGR) systems, which have a wide range of applications in several domains, such as, gaming, multimedia, automotive, home automation. However, automatic HGR is still a challenging task, mostly because of the diversity in how people perform the gestures. In addition, the number of publicly available hand gesture datasets is scarce, often the gestures are not acquired with sufficient image quality, and the gestures are not correctly performed.