Congratulations! You have been automatically subscribed to IEEE DataPort and can access all datasets on IEEE DataPort!
Congratulations! You have been automatically subscribed to IEEE DataPort and can access all datasets on IEEE DataPort!
The presented dataset encompasses a diverse collection of road images captured under a multitude of environmental conditions, specifically sourced from Tunisian highways. Comprising textual annotations in two languages, this dataset is tailored to facilitate research and development in the domain of scene understanding, language processing, and bilingual context analysis. The collection includes 2006 word pictures with Latin and Arabic text occurrences that were taken from 3000 road scene images. The dataset's versatility enables investigations into the robustness of lang
The presented dataset encompasses a diverse collection of road images captured under a multitude of environmental conditions, specifically sourced from Tunisian highways. Comprising textual annotations in two languages, this dataset is tailored to facilitate research and development in the domain of scene understanding, language processing, and bilingual context analysis. The collection includes 2006 word pictures with Latin and Arabic text occurrences that were taken from 3000 road scene images. The dataset's versatility enables investigations into the robustness of lang
In recent years, it has become more difficult to identify road traffic signage and panel guide material. Few studies have been made to solve these two issues at the same time, especially in the Arabic language. Additionally, the limited number of datasets for traffic signs and panel guide content makes the investigation more interesting. the Tunisian research groups in intelligent machines of the University of Sfax (REGIM laboratory of Sfax) will provide the NaSTSArLaT dataset free to researchers in traffic detection signs and traffic road scene text detection.