Image Processing
The dataset consists of subjective evaluations of 44 naive observers judging the visual complexity of 16 images. The subjective judgments were done using a 5-point Likert-type scale with a neutral midpoint. The items in the scale were “very complex,” “complex,” “medium,” “simple,” and “very simple.” The order of the images was randomized for every participant.
- Categories:
This is a collection of paired thermal and visible ear images. Images in this dataset were acquired in different illumination conditions ranging between 2 and 10700 lux. There are total 2200 images of which 1100 are thermal images while the other 1100 are their corresponding visible images. Images consisted of left and right ear images of 55 subjects. Images were capture in 5 illumination conditiond for every subjects. This dataset was developed for illumination invariant ear recognition study. In addition it can also be useful for thermal and visible image fusion research.
- Categories:
This is the data for paper "Environmental Context Prediction for Lower Limb Prostheses with Uncertainty Quantification" published on IEEE Transactions on Automation Science and Engineering, 2020. DOI: 10.1109/TASE.2020.2993399. For more details, please refer to https://research.ece.ncsu.edu/aros/paper-tase2020-lowerlimb.
- Categories:
As one of the research directions at OLIVES Lab @ Georgia Tech, we focus on recognizing textures and materials in real-world images, which plays an important role in object recognition and scene understanding. Aiming at describing objects or scenes with more detailed information, we explore how to computationally characterize apparent or latent properties (e.g. surface smoothness) of materials, i.e., computational material characterization, which moves a step further beyond material recognition.
- Categories:
As one of the research directions at OLIVES Lab @ Georgia Tech, we focus on recognizing textures and materials in real-world images, which plays an important role in object recognition and scene understanding. Aiming at describing objects or scenes with more detailed information, we explore how to computationally characterize apparent or latent properties (e.g. surface smoothness) of materials, i.e., computational material characterization, which moves a step further beyond material recognition.
- Categories:
The Costas condition on a permutation matrix, expressed as row indices as elements of a vector c, can be expressed as A*c=b, where b is a vector of integers in which no element is zero. A particular formulation of the matrix A allows a singular value decomposition in which the eigenvalues are squared integers and the eigenvalues may be scaled to vectors with all integer elements. This is a database of the Costas constraint matrices A, the scaled eigenvectors, and the squared eigenvalues for orders 3 through 100.
- Categories:
This dataset contains the trained model that accompanies the publication of the same name:
Anup Tuladhar*, Serena Schimert*, Deepthi Rajashekar, Helge C. Kniep, Jens Fiehler, Nils D. Forkert, "Automatic Segmentation of Stroke Lesions in Non-Contrast Computed Tomography Datasets With Convolutional Neural Networks," in IEEE Access, vol. 8, pp. 94871-94879, 2020, doi:10.1109/ACCESS.2020.2995632. *: Co-first authors
- Categories:
Objective: No data currently exist on the reproducibility of photographic food records compared to diet diaries, two commonly used methods to measure habitual dietary intake. Our aim was to examine the reproducibility of diet diaries, photographic food records, and a novel electronic sensor, consisting of counts of chews and swallows using wearable sensors and video analysis, for estimating energy intake.
- Categories:
Supplementary material for the paper: 'Adaptive Block Compressive Imaging: towards a real-time and low complexity implementation'
- Categories:
The supplementary files of our submitted TIFS paper: "CALPA-NET: Channel-pruning-assisted Deep Residual Network for Steganalysis of Digital Images".
- Categories: