Machine Learning

The AMD3IR dataset is a large-scale collection of Shortwave Infrared (SWIR) and Longwave Infrared (LWIR) images, designed to advance the ongoing research in the field of drone detection and tracking. It efficiently addresses key challenges such as detecting and distinguishing small airborne objects, differentiating drones from background clutter, and overcoming visibility limitations present in conventional imaging. The dataset comprises 20,865 SWIR images with 24,994 annotated drones and 8,696 LWIR images with 10,400 annotated drones, featuring various UAV models.

Categories:
257 Views

A significant challenge in racing-related research is the lack of publicly available datasets containing raw images with corresponding annotations for the downstream task. In this paper, we introduce RoRaTrack, a novel dataset that contains annotated multi-camera image data from racing scenarios for track detection. The data is collected on a Dallara AV-21 at a racing circuit in Indiana, in collaboration with the Indy Autonomous Challenge (IAC).

Categories:
19 Views

Comprehensive dataset (5000 spectra) of simulated grating biosensor reflections in Excel format. Generated via Lumerical FDTD, it includes 11 parameters (thickness, RI, peak wavelength, FWHM, reflectance, etc.). It is ideal for data visualization, sensor response exploration, and AI/ML benchmarking. The full dataset in Excel format is coming soon! Follow this repository to be notified when it's released. In the meantime, feel free to browse the README for more information about the project.

Categories:
300 Views

This dataset provides measurements of cerebral blood flow using Radio Frequency (RF) sensors operating in the Ultra-Wideband (UWB) frequency range, enabling non-invasive monitoring of cerebral hemodynamics. It includes blood flow feature data from two arterial networks, Arterial Network A and Arterial Network B. Statistical features were manually extracted from the RF sensor data, while autonomous feature extraction was performed using a Stacked Autoencoder (SAE) with architectures such as 32-16-32, 64-32-16-32-64, and 128-64-32-16-32-64-128.

Categories:
144 Views

DALHOUSIE NIMS LAB ATTACK IOT DATASET 2025-1 dataset comprises of four prevalent types attacks, namely Portscan, Slowloris, Synflood, and Vulnerability Scan, on nine distinct Internet of Things (IoT) devices. These attacks are very common on the IoT eco-systems because they often serve as precursors to more sophisticated attack vectors. By analyzing attack vector traffic characteristics and IoT device responses, our dataset will aid to shed light on IoT eco-system vulnerabilities.

Categories:
210 Views

This dataset comprises Terahertz (THz) images collected to support the research presented in the IEEE Access paper titled Diagnosing Grass Seed Infestation: Convolutional Neural Network Based Terahertz Imaging. The dataset is intended for the detection and classification of grass seeds embedded in biological samples, specifically ham, covered with varying thicknesses of wool. The images were captured at different frequencies within the THz spectrum, providing valuable data for the development of deep-learning models for seed detection.

Categories:
38 Views

This dataset contains human motion data collected using inertial measurement units (IMUs), including accelerometer and gyroscope readings, from participants performing specific activities. The data was gathered under controlled conditions with verbal informed consent and includes diverse motion patterns that can be used for research in human activity recognition, wearable sensor applications, and machine learning algorithm development. Each sample is labeled and processed to ensure consistency, with raw and augmented data available for use. 

Categories:
59 Views

Network telescopes collect and record unsolicited Internet-wide traffic destined to a routed but unused address space usually referred to as “Darknet” or “blackhole” address space. Among the largest network telescopes in the US, Merit Network operates one that receives unsolicited internet traffic on around 475k unused IP addresses. On an average day, the network telescope receives approximately 41.5k packets per second and around 17M bits per second. Description of the attached dataset:

1. Data Source:

Categories:
167 Views

Pages