Optical chaos communication

The source data files and code files of the paper: optical chaos shift keying communication system via neural network-based signal reconstruction. The following data is included:

1. Source figure file in the paper;

2. Source code of the proposed scheme, include the simulation code for communication, secure analysis and parameter mismatch range.

3. The source Simulink module is included for time-delayed chaotic signal generation.

Categories:
32 Views

The optical chaos communication (OCC) can provide physical layer security for high-speed data transmission. In these OCC systems, the time delay signature (TDS) serves as a crucial encryption key. We propose a method based on reservoir computing (RC) network for TDS extraction of OCC systems. The mapping relationship between the system output time series and its delay variants is learned by the RC network. Then, the convergence performance of the RC network is measured and used for TDS extraction. The effectiveness is verified by extracting TDS of the two main types of optical time-delay fe

Categories:
97 Views

The optical chaos communication (OCC) can provide physical layer security for high-speed data transmission. In these OCC systems, the time delay signature (TDS) serves as a crucial encryption key. We propose a method based on reservoir computing (RC) network for TDS extraction of OCC systems. The mapping relationship between the system output time series and its delay variants is learned by the RC network. Then, the convergence performance of the RC network is measured and used for TDS extraction. The effectiveness is verified by extracting TDS of the two main types of optical time-delay fe

Categories:
41 Views

The optical chaos communication (OCC) can provide physical layer security for high-speed data transmission. In these OCC systems, the time delay signature (TDS) serves as a crucial encryption key. We propose a method based on reservoir computing (RC) network for TDS extraction of OCC systems. The mapping relationship between the system output time series and its delay variants is learned by the RC network. Then, the convergence performance of the RC network is measured and used for TDS extraction. The effectiveness is verified by extracting TDS of the two main types of optical time-delay fe

Categories:
36 Views