ensemble learning

The ability to estimate the probability of a drug to receive approval in clinical trials provides natural advantages to optimizing pharmaceutical research workflows. Success rates of a clinical trials have deep implications to costs, duration of development, and under pressure due to stringent regulatory approval processes. We propose a machine learning approach that can predict the outcome of trial with reliable accuracies, using biological activities, physico-chemical properties of the compounds, target related features and NLP-based compound representation.


To address the problem of online automatic inspection of drug liquid bottles in production line, an implantable visual inspection system is designed and the ensemble learning algorithm for detection is proposed based on multi-features fusion. A tunnel structure is designed for visual inspection system, which allows the bottles inspection to be automated without changing original processes and devices. A high precision method is proposed for vision detection of drug liquid bottles.