Datasets
Standard Dataset
Portuguese Aspect Sentiment Triplet Extraction Datasets
- Citation Author(s):
- Submitted by:
- Jose Melendez
- Last updated:
- Sat, 08/28/2021 - 11:56
- DOI:
- 10.21227/0ej1-br13
- Data Format:
- Links:
- License:
- Categories:
- Keywords:
Abstract
Aspect Sentiment Triplet Extraction (ASTE) is an Aspect-Based Sentiment Analysis subtask (ABSA). It aims to extract aspect-opinion pairs from a sentence and identify the sentiment polarity associated with them. For instance, given the sentence ``Large rooms and great breakfast", ASTE outputs the triplet T = {(rooms, large, positive), (breakfast, great, positive)}. Although several approaches to ASBA have recently been proposed, those for Portuguese have been mostly limited to extracting only aspects without addressing ASTE tasks. This work aims to develop a framework based on Deep Learning to perform the Aspect Sentiment Triplet Extraction task in Portuguese. The framework uses BERT as a context-awareness sentence encoder, multiple parallel non-linear layers to get aspect and opinion representations, and a Graph Attention layer along with a Biaffine scorer to determine the sentiment dependency between each aspect-opinion pair. The comparison results show that our proposed framework significantly outperforms the baselines in Portuguese and is competitive with its counterparts in English.
Instructions in the attached file (Readme.pdf)
Dataset Files
- ReHol reviews ReHol.json (285.41 kB)
- ReLi reviews ReLi.json (196.10 kB)
Documentation
Attachment | Size |
---|---|
Data description | 28.59 KB |