CNN based noise classification and denoising of images

CNN based noise classification and denoising of images

Citation Author(s):
Dibakar
Sil
NIT Durgapur
Arindam
Dutta
NIT Durgapur
Aniruddha
Chandra
NIT Durgapur
Submitted by:
Aniruddha Chandra
Last updated:
Fri, 03/01/2019 - 21:15
DOI:
10.21227/3m26-dw82
License:
Dataset Views:
552
Share / Embed Cite
Abstract: 

Our goal is to find whether a convolutional neural network (CNN) performs better than the existing blind algorithms for image denoising, and, if yes, whether the noise statistics has an effect on the performance gap. We performed automatic identification of noise distribution, over a set of nine possible distributions, namely, Gaussian, log-normal, uniform, exponential, Poisson, salt and pepper, Rayleigh, speckle and Erlang. Next, for each of these noisy image sets, we compared the performance of FFDNet, a CNN based denoising method, with noise clinic, a blind denoising algorithm.

Instructions: 

Denoising results for nine different types of noises. For each noise type, from left to right: original image, noisy image, blind denoising, CNN-based denoising. Images used: image 2092, 3096, 8023, 8049 and 12074 from BSDS300 dataset [gray].

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Login or subscribe now. Sign up to be a Beta Tester and receive a coupon code for a free subscription to IEEE DataPort!

Documentation

AttachmentSize
PDF icon All_Figures_rotated.pdf2.28 MB

Embed this dataset on another website

Copy and paste the HTML code below to embed your dataset:

Share via email or social media

Click the buttons below:

facebooktwittermailshare
[1] Dibakar Sil, Arindam Dutta, Aniruddha Chandra, "CNN based noise classification and denoising of images", IEEE Dataport, 2019. [Online]. Available: http://dx.doi.org/10.21227/3m26-dw82. Accessed: Dec. 06, 2019.
@data{3m26-dw82-19,
doi = {10.21227/3m26-dw82},
url = {http://dx.doi.org/10.21227/3m26-dw82},
author = {Dibakar Sil; Arindam Dutta; Aniruddha Chandra },
publisher = {IEEE Dataport},
title = {CNN based noise classification and denoising of images},
year = {2019} }
TY - DATA
T1 - CNN based noise classification and denoising of images
AU - Dibakar Sil; Arindam Dutta; Aniruddha Chandra
PY - 2019
PB - IEEE Dataport
UR - 10.21227/3m26-dw82
ER -
Dibakar Sil, Arindam Dutta, Aniruddha Chandra. (2019). CNN based noise classification and denoising of images. IEEE Dataport. http://dx.doi.org/10.21227/3m26-dw82
Dibakar Sil, Arindam Dutta, Aniruddha Chandra, 2019. CNN based noise classification and denoising of images. Available at: http://dx.doi.org/10.21227/3m26-dw82.
Dibakar Sil, Arindam Dutta, Aniruddha Chandra. (2019). "CNN based noise classification and denoising of images." Web.
1. Dibakar Sil, Arindam Dutta, Aniruddha Chandra. CNN based noise classification and denoising of images [Internet]. IEEE Dataport; 2019. Available from : http://dx.doi.org/10.21227/3m26-dw82
Dibakar Sil, Arindam Dutta, Aniruddha Chandra. "CNN based noise classification and denoising of images." doi: 10.21227/3m26-dw82