Congratulations! You have been automatically subscribed to IEEE DataPort and can access all datasets on IEEE DataPort!
Congratulations! You have been automatically subscribed to IEEE DataPort and can access all datasets on IEEE DataPort!
SCVIC-TS-2022: Network intrusion data with original raw network packets
SCVIC-CIDS-2021 was created using the raw data in CIC-IDS-2018*, while this new dataset, SCVIC-CIDS-2022 is formed from NDSec-1** meta-data by following a similar procedure.
This dataset has been used in the following work:
J. Liu, M. Simsek, B. Kantarci, M. Bagheri, P. Djukic, "Bridging Networks and Hosts via Machine Learning-Based Intrusion Detection"; under review in IEEE Transactions on Dependable and Secure Computing.
SCVIC-CIDS-2021 is a novel dataset that combines network- and host-based data.
SCVIC-CIDS-2021 is derived from the meta-data (i.e., network packets, system logs and labeling information) from the well-known benchmark dataset, CIC-IDS-2018 (Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani, “Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization”, 4th International Conference on Information Systems Security and Privacy (ICISSP), Portugal, January 2018 ) .
The dataset has been developed in Smart Connected Vehicles Innovation Centre (SCVIC) of the University of Ottawa in Kanata North Technology Park.
In order to define a benchmark for Machine Learning (ML)-based Advanced Persistent Threat (APT) detection in the network traffic, we create a dataset named SCVIC-APT-2021, that can realistically represent the contemporary network architecture and APT characteristics. Please cite the following original article where this work was initially presented: