Empirical line methods (ELM) are frequently used to correct images from aerial remote sensing. Remote sensing of aquatic environments captures only a small amount of energy because the water absorbs much of it. The small signal response of the water is proportionally smaller when compared to the other land surface targets.
This dataset presents some resources and results of a new approach to calibrate empirical lines combining reference calibration panels with water samples. We optimize the method using python algorithms until reaches the best result.
This database is a image set of a strongest glint-affected region of inland water Capivara reservoir, Brazil. We carried out a flight survey in September 2016 on the confluence region of the Tibagi and Paranapanema Rivers. We use the hyperspectral camera manufactured by Rikola, model FPI2014, wich collect 25 spectral bands at following intervals and full widths at half maximum (FWHM), both expressed in nanometers (nm):