BERT

This data repository contains test data and corresponding test code for evaluating the performance of a machine learning model. The dataset includes 950 labeled samples across 7 different classes. The test code provides implementations of several common evaluation metrics, including accuracy, precision, recall, and F1-score. This resource is intended to facilitate the benchmarking and comparison of different machine learning algorithms on a standardized task.

Categories:
28 Views

This Named Entities dataset is implemented by employing the widely used Large Language Model (LLM), BERT, on the CORD-19 biomedical literature corpus. By fine-tuning the pre-trained BERT on the CORD-NER dataset, the model gains the ability to comprehend the context and semantics of biomedical named entities. The refined model is then utilized on the CORD-19 to extract more contextually relevant and updated named entities. However, fine-tuning large datasets with LLMs poses a challenge. To counter this, two distinct sampling methodologies are utilized.

Categories:
330 Views