Skip to main content

Datasets

Standard Dataset

AIoT Malware detection (Zeek preprocessed)

Citation Author(s):
Nour Moustafa (UNSW)
S. Hettich (UCI)
S. D. Bay (UCI)
Sebastian Garcia (CVUT)
Agustin Parmisano (CVUT)
Maria Jose Erquiaga (CVUT)
Muhammad Dany AlFriki (NTUST)
Cut Alna Fadhilla (NTUST)
Rafael Kaliski (NSYSU)
Submitted by:
Rafael Kaliski
Last updated:
DOI:
10.21227/kkpn-2q14
Data Format:
Links:
No Ratings Yet

Abstract

Datsets and scripts are for derivation of a lightweight AIoT malware detection model.

Instructions:

Datasets and Scripts for “Lightweight Meta-learning BotNet Attack Detection”

— Requirements (code tested with):

Python==3.9

matplotlib==3.5.2

mkl==2022.1.0

mkl_service==2.4.0

mlens==0.2.3

numpy==1.21.5

pandas==1.4.2

scikit_learn==1.1.1

scipy==1.8.0

seaborn==0.11.2

==============================

Datasets and Scripts

==============================

Binary classifier:

——

IoT23 Script: Ensemble_IoT23_Binary.ipynb

IoT23 Dataset: IoT23.csv

Meta Models:  SuperLearner, Subsemble, Sequential

====

IoT23 Script: NML_IoT23_Binary.ipynb

IoT23 Dataset: IoT23.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

——

TON Script:  Ensemble_TON_Binary.ipynb

TON Dataset:  ToN_Distrib.csv

Meta Models:  SuperLearner, Subsemble, Sequential

=====

TON Script: NML_TON_Binary.ipynb

TON Dataset:  ToN_Distrib.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

——

KDD Script: MetaLearning_KDDCUP99.ipynb

KDD Dataset:  KDD99_Labeled.csv

Meta Models:  SuperLearner, Subsemble, Sequential

=====

KDD Script: NML_KDD.ipynb

KDD Dataset:  KDD99_Labeled.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

+++++++++++++++++++++++++++++++

Multicategory classifer:

——

IoT23 Script: Ensemble_MultiCategories_IOT23.ipynb

IoT23 Dataset: Iot-Data.csv

Meta Models:  SuperLearner, Subsemble, Sequential

====

IoT23 Script: NonMetaLearner_MultiCategories_IOT23.ipynb

IoT23 Dataset: Iot-Data.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

——

TON Script:  Ensembles_MultiCategories_TON.ipynb

TON Dataset:  ToN_Distrib.csv

Meta Models:  SuperLearner, Subsemble, Sequential

=====

TON Script: NonMetaLearners_MultiCategories_TON.ipynb

TON Dataset:  ToN_Distrib.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

——

KDD Script: Ensembles_MultiCategories_KDD99.ipynb

KDD Dataset:  KDD99_10%_Labeled.csv

Meta Models:  SuperLearner, Subsemble, Sequential

=====

KDD Script: NonMetaLearner_MultiCategories_KDD99.ipynb

KDD Dataset:  KDD99_10%_Labeled.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

+++++++++++++++++++++++++++++++

 

——

 

Python==3.9

matplotlib==3.5.2

mkl==2022.1.0

mkl_service==2.4.0

mlens==0.2.3

numpy==1.21.5

pandas==1.4.2

scikit_learn==1.1.1

scipy==1.8.0

seaborn==0.11.2

==============================

Datasets and Scripts

==============================

Binary classifier:

——

IoT23 Script: Ensemble_IoT23_Binary.ipynb

IoT23 Dataset: IoT23.csv

Meta Models:  SuperLearner, Subsemble, Sequential

====

IoT23 Script: NML_IoT23_Binary.ipynb

IoT23 Dataset: IoT23.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

——

TON Script:  Ensemble_TON_Binary.ipynb

TON Dataset:  ToN_Distrib.csv

Meta Models:  SuperLearner, Subsemble, Sequential

=====

TON Script: NML_TON_Binary.ipynb

TON Dataset:  ToN_Distrib.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

——

KDD Script: MetaLearning_KDDCUP99.ipynb

KDD Dataset:  KDD99_Labeled.csv

Meta Models:  SuperLearner, Subsemble, Sequential

=====

KDD Script: NML_KDD.ipynb

KDD Dataset:  KDD99_Labeled.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

+++++++++++++++++++++++++++++++

Multicategory classifer:

——

IoT23 Script: Ensemble_MultiCategories_IOT23.ipynb

IoT23 Dataset: Iot-Data.csv

Meta Models:  SuperLearner, Subsemble, Sequential

====

IoT23 Script: NonMetaLearner_MultiCategories_IOT23.ipynb

IoT23 Dataset: Iot-Data.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

——

TON Script:  Ensembles_MultiCategories_TON.ipynb

TON Dataset:  ToN_Distrib.csv

Meta Models:  SuperLearner, Subsemble, Sequential

=====

TON Script: NonMetaLearners_MultiCategories_TON.ipynb

TON Dataset:  ToN_Distrib.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

——

KDD Script: Ensembles_MultiCategories_KDD99.ipynb

KDD Dataset:  KDD99_10%_Labeled.csv

Meta Models:  SuperLearner, Subsemble, Sequential

=====

KDD Script: NonMetaLearner_MultiCategories_KDD99.ipynb

KDD Dataset:  KDD99_10%_Labeled.csv

Ensemble Models: Bagging, Boosting, Stacking

Weak Leaner Models: MLP, Naive Bayes, Random Forest, Logistic Regression, Decision Tree

+++++++++++++++++++++++++++++++

 

——

Funding Agency
Ministry of Science and Technology (Republic of China)
Grant Number
MOST 108-2218-E-011-036-MY3