Ultra data-oriented parallel fractional hot-deck imputation; Ultra incomplete data; Ultrahigh dimensional missing data curing
Parallel fractional hot-deck imputation (P-FHDI) is a general-purpose, assumption-free tool for handling item nonresponse in big incomplete data by combining the theory of FHDI and parallel computing. FHDI cures multivariate missing data by filling each missing unit with multiple observed values (thus, hot-deck) without resorting to distributional assumptions. P-FHDI can tackle big incomplete data with millions of instances (big-n) or 10, 000 variables (big-p).
- Categories:
367 Views