System Modeling
This MATLAB script implements a simulation framework for an IRS-assisted IoT network with multiple nodes in a 3D environment. The code integrates a number of advanced wireless features, including elevation-aware IRS phase alignment, dynamic spectrum sensing for channel allocation, inter-node interference modeling, and Doppler effects from node mobility. Operating at microwaves with configurable elements, the system achieves realistic performance metrics through iterative optimization.
- Categories:
This MATLAB script presents an innovative approach to 5G beamforming prediction using a sequence-based LSTM neural network. Unlike conventional methods that predict only final vectors, this solution provides time-stepped predictions across entire sequences, enabling real-time tracking of dynamic channel conditions. The framework achieves stable training convergence while maintaining physically meaningful performance metrics, including realistic path loss and SNR values.
- Categories:
This MATLAB script implements a reinforcement learning (RL) approach to optimize IRS phase configurations in a MIMO wireless system. The implementation features a basic MIMO setup with a 16-element IRS operating at 12 GHz (mid-band frequency). Using the policy gradient method with a two-layer neural network, it learns optimal phase shifts while considering user mobility and Rician fading channels. The system models both direct and IRS-reflected paths, incorporating realistic path loss and channel conditions.
- Categories:
This MATLAB script demonstrates an approach to beamforming and interference suppression in scenarios with multiple users and multiple interferers. It constructs an N-element linear array, computes beamformer weights through a generalized eigen-decomposition of summed desired and interference correlation matrices, and then runs a Monte Carlo simulation to estimate the Signal-to-Interference-plus-Noise Ratio (SINR) for one of the users under random channel conditions.
- Categories: