Stereo mathing、real scenes、autonomous driving
![](https://ieee-dataport.org/sites/default/files/styles/3x2/public/tags/images/color-2174045_1280.png?itok=hQ444ipy)
- Categories:
![](https://ieee-dataport.org/sites/default/files/styles/3x2/public/tags/images/color-2174045_1280.png?itok=hQ444ipy)
To evaluate SARNet’s generalization, we captured a real-world stereo dataset in Guangzhou using a binocular camera. The dataset includes diverse urban and natural scenes to assess SARNet’s performance beyond synthetic and benchmark datasets. Fig. 7 illustrates SARNet’s predictions on real-world scenes, KITTI 2012, and KITTI 2015. Experimental results demonstrate that SARNet generates clear and consistent disparity maps across both smooth and complex regions, highlighting its robustness in real-world depth estimation tasks.
- Categories: