RF
![](https://ieee-dataport.org/sites/default/files/styles/3x2/public/tags/images/artificial-intelligence-2167835_1920.jpg?itok=wAd0kf8k)
This is the dataset we collected for the article "Scalable Undersized Dataset RF Classification: Using Convolutional Multistage Training". 17 objects were collected in the laboratory and scanned using a 'cw radar' setup featuring 2x UWB antennas (1 transmit antenna, 1 receive antenna), inside anechoic chamber. There was no clutter added in the experiment.
- Categories:
![](https://ieee-dataport.org/sites/default/files/styles/3x2/public/tags/images/eeg-2680957_1920_1.jpg?itok=izWFPK6o)
An energy harvester for a smart contact lens that monitors the glucose level of a user is developed and demonstrated. The energy harvester captures a smartphone’s 2G cellular emission, and rectifies it into DC power to operate on-lens microelectronics for glucose detection and wireless data transmission. The energy harvester can reach a maximum Ra- dio Frequency (RF) to Direct Current (DC) power conversion efficiency of 47%. An electrically realistic human eye model is designed and fabricated using 3D printing technologies to assist in various measurements of the proposed energy harvester.
- Categories: