Real-world graph dataset
The security of Internet of Things (IoT) networks has become a major concern in recent years, as the number of connected objects continues to grow, thereby opening up more potential for malicious attacks. Supervised Machine Learning (ML) algorithms, which require a labeled dataset for training, are increasingly employed to detect attacks in IoT networks. However, existing datasets focus only on specific types of attacks, resulting in ML-based solutions that struggle to generalize effectively.
- Categories:
MS-BioGraphs are a family of sequence similarity graph datasets with up to 2.5 trillion edges. The graphs are weighted edges and presented in compressed WebGraph format. The dataset include symmetric and asymmetric graphs. The largest graph has been created by matching sequences in Metaclust dataset with 1.7 billion sequences. These real-world graph dataset are useful for measuring contributions in High-Performance Computing and High-Performance Graph Processing.
- Categories: