intrusion detection

The advancements in the field of telecommunications have resulted in an increasing demand for robust, high-speed, and secure connections between User Equipment (UE) instances and the Data Network (DN). The implementation of the newly defined 3rd Generation Partnership Project 3GPP (3GPP) network architecture in the 5G Core (5GC) represents a significant leap towards fulfilling these demands. This architecture promises faster connectivity, low latency, higher data transfer rates, and improved network reliability.


With a plethora of new connections, features, and services introduced, the 5th generation (5G) wireless technology reflects the development of mobile communication networks and is here to stay for the next decade. The multitude of services and technologies that 5G incorporates have made modern communication networks very complex and sophisticated in nature. This complexity along with the incorporation of Machine Learning (ML) and Artificial Intelligence (AI) provides the opportunity for the attackers to launch intelligent attacks against the network and network devices.


The network attacks are increasing both in frequency and intensity with the rapid growth of internet of things (IoT) devices. Recently, denial of service (DoS) and distributed denial of service (DDoS) attacks are reported as the most frequent attacks in IoT networks. The traditional security solutions like firewalls, intrusion detection systems, etc., are unable to detect the complex DoS and DDoS attacks since most of them filter the normal and attack traffic based upon the static predefined rules.


The Internet of things (IoT) has emerged as a topic of intense interest among the research and industrial community as it has had a revolutionary impact on human life. The rapid growth of IoT technology has revolutionized human life by inaugurating the concept of smart devices, smart healthcare, smart industry, smart city, smart grid, among others. IoT devices’ security has become a serious concern nowadays, especially for the healthcare domain, where recent attacks exposed damaging IoT security vulnerabilities. Traditional network security solutions are well established.


The Internet of Things (IoT) is reshaping our connected world, due to the prevalence of lightweight devices connected to the Internet and their communication technologies. Therefore, research towards intrusion detection in the IoT domain has a lot of significance. Network intrusion datasets are fundamental for this research, as many attack detection strategies have to be trained and evaluated using these datasets.


This is the dataset provided and collected while "Car Hacking: Attack & Defense Challenge" in 2020. We are the main organizer of the competition along with Culture Makers and Korea Internet & Security Agency. We are very proud of releasing these valuable datasets for all security researchers for free.

The competition aimed to develop attack and detection techniques of Controller Area Network (CAN), a widely used standard of in-vehicle network. The target vehicle of competition was Hyundai Avante CN7.


This dataset is from apache access log server. It contains: ip address, datetime, gmt, request, status, size, user agent, country, label. The dataset show malicious activity in IP address, request, and so on. You can analyze more as intrusion detection parameter.



Message Queuing Telemetry Transport (MQTT) protocol is one of the most used standards used in Internet of Things (IoT) machine to machine communication. The increase in the number of available IoT devices and used protocols reinforce the need for new and robust Intrusion Detection Systems (IDS). However, building IoT IDS requires the availability of datasets to process, train and evaluate these models. The dataset presented in this paper is the first to simulate an MQTT-based network. The dataset is generated using a simulated MQTT network architecture.



GPS spoofing and jamming are common attacks against the UAV, however, conducting these experiments for research can be difficult in many areas. This dataset consists of a logs from a benign flight as well as one where the UAV experiences GPS spoofing and jamming. The Keysight EXG N5172B signal generator is used to provide the true coordinates as a location in Shanghai, China.


These datasets are used to detect Intrusions in Controller Area Network (CAN) bus. Intrusions are detected using various Machine Learning and Deep Learning algorithms.