IIoT; Network Anomaly; Cybersecurity; Feature Engineering; Data Aggregation; Mutual Information; DDoS; Machine Learning

This paper presents an enhanced methodology for network anomaly detection in Industrial IoT (IIoT) systems using advanced data aggregation and Mutual Information (MI)-based feature selection. The focus is on transforming raw network traffic into meaningful, aggregated forms that capture crucial temporal and statistical patterns. A refined set of 150 features including unique IP counts, TCP acknowledgment patterns, and ICMP sequence ratios was identified using MI to enhance detection accuracy.

Categories:
88 Views