Skip to main content

GAN

Annotating the scene text in the PRIVATY-TEXT-IMAGE dataset was done in Adobe Photoshop.   To maintain the rationality of the annotation operation, the images' aesthetics, and the textures' consistency around the deleted text areas, we utilized the content-aware fill feature of Photoshop.   This feature can enhance intelligent editing and modification capabilities during the image processing, automatically analyze the image content around the private text areas, and generate matching filling content to make the images look more natural and complete.  

Categories:

Annotating the scene text in the PRIVATY-TEXT-IMAGE dataset was done in Adobe Photoshop.   To maintain the rationality of the annotation operation, the images' aesthetics, and the textures' consistency around the deleted text areas, we utilized the content-aware fill feature of Photoshop.   This feature can enhance intelligent editing and modification capabilities during the image processing, automatically analyze the image content around the private text areas, and generate matching filling content to make the images look more natural and complete.  

Categories:

Annotating the scene text in the PRIVATY-TEXT-IMAGE dataset was done in Adobe Photoshop.   To maintain the rationality of the annotation operation, the images' aesthetics, and the textures' consistency around the deleted text areas, we utilized the content-aware fill feature of Photoshop.   This feature can enhance intelligent editing and modification capabilities during the image processing, automatically analyze the image content around the private text areas, and generate matching filling content to make the images look more natural and complete.  

Categories:

Annotating the scene text in the PRIVATY-TEXT-IMAGE dataset was done in Adobe Photoshop.   To maintain the rationality of the annotation operation, the images' aesthetics, and the textures' consistency around the deleted text areas, we utilized the content-aware fill feature of Photoshop.   This feature can enhance intelligent editing and modification capabilities during the image processing, automatically analyze the image content around the private text areas, and generate matching filling content to make the images look more natural and complete.  

Categories:

The electroretinogram (ERG) is a clinical test that records the retina's electrical response to light. The ERG is a promising way to study different neurodevelopmental and neurodegenerative disorders, including Autism Spectrum Disorder (ASD) - a neurodevelopmental condition that impacts language, communication, and social interactions. However, privacy issues and a lack of data complicate Artificial Intelligence applications in this domain. Synthetic ERG signals generated from real ERG recordings should carry similar information and could be used as an extension for natural data.

Categories:

Global Illumination (GI) is a strategy in computer graphics to add a certain degree of realism.  Several approaches exist to achieve such a visual effect for computer-generated imagery. The most physically accurate approach is through conventional raytracing. It produces similar realistic results by trading-off time and computational-resource intensive, making them unsuitable for real-time usage. For more real-time usage scenarios, a set of faster algorithms exists that utilize post-processing on top of rasterization rather than performing ray-tracing.

Categories: