Congratulations! You have been automatically subscribed to IEEE DataPort and can access all datasets on IEEE DataPort!
Congratulations! You have been automatically subscribed to IEEE DataPort and can access all datasets on IEEE DataPort!
A dataset comprising 500 data points was gathered by collecting answers to 250 computer science problems assigned in classes and quizzes from students. To generate this dataset, a response was selected from a random student for each question. The same questions were then asked to ChatGPT 3.0, and the answers were recorded. Based on the source of the response (either student or GPT), the dataset was labeled accordingly. The resulting labeled dataset includes the list of assignment and quiz questions, along with the corresponding answers from students and ChatGPT.
We collected data to train the ML module to determine the user’s device's location based on beacon frame characteristics and RSSI values from Wi-Fi APs. To collect the data, we defined a threshold distance of 7 feet as the maximum allowable distance between the user’s devices. We then collected two datasets: one with data collected while the two Raspberry Pis were within 7 feet or less of each other named ”authentic”, and another with data collected while the distance between the two Raspberry Pis was over 7 feet named ”unauthorized”.