Millimeter-wave (mmWave) spectrum with wide bandwidth provides a promising solution to enable high throughput in next-generation wireless agricultural networks, characterized by swarms of autonomous ground vehicles, unmanned aerial vehicles (UAVs), and connected agricultural machinery. However, channel models at mmWave frequencies in agricultural environments remain elusive. Moreover, agricultural field channels bear notable distinctions from urban and rural macrocellular network channels due to the dynamic crop growth behavior.
Vehicle-to-barrier (V2B) communications is an emerging communication technology between vehicles and roadside barriers to mitigate run-off-road crashes, which result in more than half of the traffic-related fatalities in the United States. To ensure V2B connectivity, establishing a reliable V2B channel is necessary before a potential crash, such that real-time information from barriers can help (semi-)autonomous vehicles make informed decisions. However, the characteristics of the V2B channel are not yet well understood.