OFDM autoencoder based on deep learning for vehicular networks
The drawback of inter-subcarrier interference in OFDM systems makes the channel estimation and signal detection performance of OFDM systems with few pilots and short cyclic prefixes (CP) poor. Thus, we use deep learning to assist OFDM in recovering nonlinearly distorted transmission data. Specifically, we use a self-normalizing network (SNN) for channel estimation, combined with a convolutional neural network (CNN) and a bidirectional gated recurrent unit (BiGRU) for signal detection, thus proposing a novel SNN-CNN-BiGRU network structure (SCBiGNet).