Skip to main content

Artificial Intelligence

Large Language Models (LLMs) have been widely used to automate programming tasks. Their capabilities have been evaluated by assessing the quality of generated code through tests or proofs. The extent to which they can reason about code is a critical question revealing important insights about their true capabilities.

Categories:

This dataset contains raw FMCW radar signals collected for human localization and activity monitoring in indoor environments. The data was recorded using mmWave radar sensors across two different laboratory settings, designed to simulate real-life scenarios for human detection and localization tasks.

The dataset includes experiments with 1, 2, and 3 people, covering various positions, walking trajectories, and intermediate locations to evaluate model generalization. Ground truth information is embedded in the folder names, indicating the true distance and angle of the targets.

Categories:

This dataset contains raw FMCW radar signals collected for human localization and activity monitoring in indoor environments. The data was recorded using mmWave radar sensors across two different laboratory settings, designed to simulate real-life scenarios for human detection and localization tasks.

The dataset includes experiments with 1, 2, and 3 people, covering various positions, walking trajectories, and intermediate locations to evaluate model generalization. Ground truth information is embedded in the folder names, indicating the true distance and angle of the targets.

Categories:

This dataset contains raw FMCW radar signals collected for human localization and activity monitoring in indoor environments. The data was recorded using mmWave radar sensors across two different laboratory settings, designed to simulate real-life scenarios for human detection and localization tasks.

The dataset includes experiments with 1, 2, and 3 people, covering various positions, walking trajectories, and intermediate locations to evaluate model generalization. Ground truth information is embedded in the folder names, indicating the true distance and angle of the targets.

Categories:

This dataset contains raw FMCW radar signals collected for human localization and activity monitoring in indoor environments. The data was recorded using mmWave radar sensors across two different laboratory settings, designed to simulate real-life scenarios for human detection and localization tasks.

The dataset includes experiments with 1, 2, and 3 people, covering various positions, walking trajectories, and intermediate locations to evaluate model generalization. Ground truth information is embedded in the folder names, indicating the true distance and angle of the targets.

Categories:

The spectrum of the Laplace-Beltrami (LB) operator is central in geometric deep learning tasks, capturing intrinsic properties of the shape of the object under consideration. The best established method for its estimation, from a triangulated mesh of the object, is based on the Finite Element Method (FEM), and computes the top k LB eigenvalues with a complexity of O(Nk), where N is the number of points.

Categories:

https://github.com/GraphDetec/MGTAB

MGTAB is the first standardized graph-based benchmark for stance and bot detection. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations.

The components in the datasets:

Categories:

https://github.com/GraphDetec/MGTAB

MGTAB is the first standardized graph-based benchmark for stance and bot detection. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations.

 

The components in the datasets:

 

Categories: