Linear polarization
The rapid evolution of wireless technology has led to the proliferation of small, low-power IoT devices, often constrained by traditional battery limitations, resulting in size, weight, and maintenance challenges. In response, ambient radio frequency (RF) energy harvesting has emerged as a promising solution to power IoT devices using RF energy from the environment. However, optimizing the placement of energy harvesters is crucial for maximizing energy reception. This paper employs machine learning (ML) techniques to predict areas with high power intensity for RF energy harvesting.
- Categories:
404 Views