RGBT234

Citation Author(s):
Chenglong
Li
Submitted by:
Weidai Xia
Last updated:
Tue, 02/25/2025 - 00:44
DOI:
10.21227/hqj7-rd94
License:
30 Views
Categories:
Keywords:
0
0 ratings - Please login to submit your rating.

Abstract 

This dataset is a large-scale video benchmark constructed for RGB-Thermal (RGB-T) object tracking tasks, featuring the following key characteristics:

 

1. **Scale & Diversity**  

- Contains 234,000 total frames, with sequences up to 8,000 frames  

- Covers diverse scenarios and complex environmental conditions  

- Currently the largest publicly available RGB-T dataset in the field  

 

2. **Precise Multimodal Alignment**  

- Strict spatiotemporal synchronization between RGB and thermal sequences  

- Requires no pre/post-processing for direct usage  

- Ensures cross-modal data consistency for reliable comparisons  

 

3. **Granular Annotation System**  

- Frame-level bounding box annotations  

- Specially labeled occlusion levels for tracked objects  

- Enables occlusion-sensitive analysis and robustness evaluation  

 

4. **Core Innovations**  

- Breaks scale limitations of existing datasets for comprehensive evaluation  

- First benchmark with pixel-level multimodal alignment accuracy  

- Introduces quantitative occlusion analysis as a new dimension  

- Provides standardized validation for multimodal fusion algorithms  

 

The dataset addresses longstanding evaluation challenges in RGB-T tracking by offering:  

- Precisely aligned cross-modal data streams  

- Fine-grained occlusion annotations  

- Large-scale sample capacity  

 

It enables in-depth research on:  

- Effectiveness verification of multimodal feature fusion  

- Sustained performance assessment for long-term tracking  

- Algorithm robustness testing under varying occlusion levels  

- Benchmark comparisons for cross-modal representation learning  

 

As the first comprehensive RGB-T tracking benchmark, it establishes new research paradigms and reliability validation standards, significantly advancing visible-thermal fusion tracking technologies.

Instructions: 

This dataset is a large-scale video benchmark constructed for RGB-Thermal (RGB-T) object tracking tasks, featuring the following key characteristics:

 

1. **Scale & Diversity**  

- Contains 234,000 total frames, with sequences up to 8,000 frames  

- Covers diverse scenarios and complex environmental conditions  

- Currently the largest publicly available RGB-T dataset in the field  

 

2. **Precise Multimodal Alignment**  

- Strict spatiotemporal synchronization between RGB and thermal sequences  

- Requires no pre/post-processing for direct usage  

- Ensures cross-modal data consistency for reliable comparisons  

 

3. **Granular Annotation System**  

- Frame-level bounding box annotations  

- Specially labeled occlusion levels for tracked objects  

- Enables occlusion-sensitive analysis and robustness evaluation  

 

4. **Core Innovations**  

- Breaks scale limitations of existing datasets for comprehensive evaluation  

- First benchmark with pixel-level multimodal alignment accuracy  

- Introduces quantitative occlusion analysis as a new dimension  

- Provides standardized validation for multimodal fusion algorithms  

 

The dataset addresses longstanding evaluation challenges in RGB-T tracking by offering:  

- Precisely aligned cross-modal data streams  

- Fine-grained occlusion annotations  

- Large-scale sample capacity  

 

It enables in-depth research on:  

- Effectiveness verification of multimodal feature fusion  

- Sustained performance assessment for long-term tracking  

- Algorithm robustness testing under varying occlusion levels  

- Benchmark comparisons for cross-modal representation learning  

 

As the first comprehensive RGB-T tracking benchmark, it establishes new research paradigms and reliability validation standards, significantly advancing visible-thermal fusion tracking technologies.

Dataset Files

    Files have not been uploaded for this dataset