Satellite Data

Designing practical algorithms for damage detection in satellite images requires a substantial and well-labeled dataset for training, validation, and testing. In this paper, we collect GAZADeepDav: a high-resolution PlanetScope satellite imagery dataset with 7264 tiles for no damage and 6196 tiles for damage . This work is delving into the steps of collecting the dataset, Geotagging and employing deep learning architectures to distinguish damage in war zones while also providing valuable insights for researchers undertaking similar tasks in real-world applications.

Categories:
190 Views

Adverse climatic events like heat stress, floods, unseasonal rainfall, and droughts frequently hinder crop productivity. Long-term crop yield data plays a crucial role in food security planning. This study presents historical wheat yield data at the satellite pixel level from 2001 to 2019 in Uttar Pradesh, India. We use various satellite indicators to develop wheat yield models, including the normalized difference vegetation index and gridded weather data, such as precipitation, temperature, and evapotranspiration.

Categories:
879 Views