finite element method (FEM)

The multi-effect fields in the grounded-wire source time-domain electromagnetic (TDEM) will be generated by complex physical characteristics and parameter information of polymetallic ore. The studies show that the induced polarization (IP) and magnetic viscosity (MV) effects are significant signs of polymetallic ore and have been proved t


We present a finite-element-based cohesive zone model for simulating the nonlinear fracture process driving the propagation of water-filled surface crevasses in floating ice tongues. The fracture process is captured using an interface element whose constitutive behavior is described by a bilinear cohesive law, and the bulk rheology of ice is described by a nonlinear elasto-viscoplastic model. The additional loading due to meltwater pressure within the crevasse is incorporated by combining the ideas of poromechanics and damage mechanics.