explainability

Artificial Intelligence (AI) has increasingly influenced modern society, recently in particular through significant advancements in Large Language Models (LLMs). However, high computational and storage demands of LLMs still limit their deployment in resource-constrained environments. Knowledge distillation addresses this challenge by training a smaller language model (student) from a larger one (teacher). Previous research has introduced several distillation methods for both generating training data and training the student model.

Categories:
18 Views

Artificial Intelligence (AI) has increasingly influenced modern society, recently in particular through significant advancements in Large Language Models (LLMs). However, high computational and storage demands of LLMs still limit their deployment in resource-constrained environments. Knowledge distillation addresses this challenge by training a smaller language model (student) from a larger one (teacher). Previous research has introduced several distillation methods for both generating training data and training the student model.

Categories:
13 Views

X-CANIDS Dataset (In-Vehicle Signal Dataset)

In March 2024, one of our recent research "X-CANIDS: Signal-Aware Explainable Intrusion Detection System for Controller Area Network-Based In-Vehicle Network" was published in IEEE Transactions on Vehicular Technology. Here we publish the dataset used in the article. We hope our dataset facilitates further research using deserialized signals as well as raw CAN messages.

Real-world data collection. Our benign driving dataset is unique in that it has been collected from real-world environments.

Categories:
2280 Views