collaborative filtering

In this paper, we present a collaborative recommend system that recommends elective courses for students based on similarities of student’s grades obtained in the last semester. The proposed system employs data mining techniques to discover patterns between grades. Consequently, we have noticed that clustering students into similar groups by performing clustering. The data set is processed for clustering in such a way that it produces optimal number of clusters.


Academic spaces are an environment that promotes student performance not only because of the quality of its equipment, but also because of its ambient comfort conditions, which can be controlled by means of actuators that receive data from sensors. Something similar can be said about other environments, such as home, business, or industry environment. However, sensor devices can cause faults or inaccurate readings in a timely manner, affecting control mechanisms. The mutual relationship between ambient variables can be a source of knowledge to predict a variable in case a sensor fails.