Android malware
The Android Malware Detection Dataset consists of different flavors and diversity of malware APK files that can be used for malware detection using machine learning. It is my research work and if you use this dataset please cite my work in your research papers.
- Categories:
The Dada dataset is associated with the paper “Debiasing Android Malware Datasets: How can I trust your results if your dataset is biased?”. The goal of this dataset is to provide a new updated dataset of goodware/malware applications that can be used by other researchers for performing experiments, for example, detection or classification algorithms. The dataset contains the applications hashes and some characteristics.
- Categories:
This dataset is a hand noted dataset that consists of two categories, evasion and normal methods. By evasion methods we mean the methods that are used by Android malware to hide their malicious payload, and hinder the dynamic analysis. Normal methods are any other methods that cannot be used as evasion techniques. Also, the evasion methods are categorized into six categories: File access, Integrity check, Location, SMS, Time, Anti-emulation. This dataset can be used by any ML or DL approaches to predict new evasion techniques that can be used by malware to hinder the dynamic analysis.
- Categories: