SPRSound: Open-Source SJTU Paediatric Respiratory Sound Database

Citation Author(s):
Qing
Zhang
Shanghai Jiao Tong University
Jing
Zhang
Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP)
Jiajun
Yuan
Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP)
Huajie
Huang
Shanghai Jiao Tong University
Yuhang
Zhang
Shanghai Jiao Tong University
Baoqin
Zhang
Taicang Affiliated Hospital of Soochow University
Gaomei
Lv
Linyi City People Hospital
Shuzhu
Lin
Fengcheng Hospital
Na
Wang
Linyi City Maternal and Child Health Hospital
Xin
Liu
Fifth Affiliated Hospital of Harbin Medical University
Mingyu
Tang
Shanghai Children’s Medical Center
Yahua
Wang
Shanghai Children’s Medical Center
Hui
Ma
Shanghai Children’s Medical Center
Lu
Liu
Shanghai Children’s Medical Center
Shuhua
Yuan
Shanghai Children’s Medical Center
Hongyuan
Zhou
Shanghai Tuoxiao Intelligent Technology Co., Ltd
Jian
Zhao
Shanghai Jiao Tong University
Yongfu
Li
Shanghai Jiao Tong University
Yong
Yin
Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP)
Liebin
Zhao
Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP)
Guoxing
Wang
Shanghai Jiao Tong University
Yong
Lian
Shanghai Jiao Tong University
Submitted by:
Yongfu Li
Last updated:
Sat, 02/24/2024 - 08:02
DOI:
10.21227/nfkk-1x47
Research Article Link:
Links:
License:
5
1 rating - Please login to submit your rating.

Abstract 

It has proved that the auscultation of respiratory sound has advantage in early respiratory diagnosis. Various methods have been raised to perform automatic respiratory sound analysis to reduce subjective diagnosis and physicians’ workload. However, these methods highly rely on the quality of respiratory sound database. In this work, we have developed the first open-access paediatric respiratory sound database, SPRSound. The database consists of 2,683 records and 9,089 respiratory sound events from 292 participants. Accurate label is important to achieve a good prediction for adventitious respiratory sound classification problem. A custom-made sound label annotation software (SoundAnn) has been developed to perform sound editing, sound annotation, and quality assurance evaluation. A team of 11 experienced paediatric physicians is involved in the entire process to establish golden standard reference for the dataset.

Instructions: 

 

Our database is the first open access respiratory sound database in the pediatric population, aging from 1 month to 18 years old. The respiratory sounds contained in the dataset were recorded at the pediatric respiratory department at Shanghai Children’s Medical Center (SCMC) using Yunting model II Stethoscopes. 

The recordings are saved in .wav format with naming rules as follows: Each name is composed of 5 elements separated with underscores, including the patient number, age, gender, the recording location, and the recording number of the participants.
1. Patient number (e.g., 65101170)
2. Age (e.g., 0.4)
3. Gender
  a. Male (0)
  b. Female (1)
4. Recording location 
  a. left posterior (p1)
  b. left lateral (p2)
  c. right posterior (p3)
  d. right lateral (p4)
5. Recording number (e.g., 3246)

The annotations at the record and event level are provided in this database. At the record level, each recording with poor signal quality was annotated as Poor Quality, while the recordings with high signal quality were annotated as Normal, CAS, DAS, or CAS & DAS according to the presence/absence of continuous/discontinuous adventitious respiratory sounds. At the event level, each recording was segmented into multiple respiratory event and annotated as Normal, Rhonchi, Wheeze, Stridor, Coarse Crackle, Fine Crackle, or Wheeze+Crackle. 

The annotation information of each recording is saved in .json format with the same filename, which contains the annotation at record level and event level. The annotation at record level is Normal, CAS, DAS, CAS & DAS or Poor Quality. The annotation at event level consists of the start (ms) and the end (ms) of respiratory events, and the corresponding type of respiratory events (Normal, Rhonchi, Wheeze, Stridor, Coarse Crackle, Fine Crackle, Wheeze+Crackle).

An example of annotation file is as follow:

```json
{
    "recording_annotation": "Normal",
    "event_annotation": [
        {
            "start": 342, 
         	"end": 2515, 
            "type": "Normal"
        }, {
            "start": 2557, 
            "end": 3776, 
            "type": "Normal"
        }, {
            "start": 4547, 
            "end": 5651, 
            "type": "Normal"
        }, {
            "start": 6439, 
            "end": 8065, 
            "type": "Normal"
        }, {
            "start": 8363, 
            "end": 9201, 
            "type": "Normal"
        }
	]
}
```
Funding Agency: 
National Key Research and Development Program of China
Grant Number: 
2019YFB2204500

Documentation

AttachmentSize
File README.md4.11 KB